access icon free Reduced-order simultaneous state and fault estimator based fault tolerant preview control for discrete-time linear time-invariant systems

In this study, an integrated fault tolerant preview tracking control framework is proposed based on reduced-order simultaneous state and fault estimation, robust preview control and fault signal compensation. In general, this work consists of three key design parts. Firstly, the analysis and synthesis conditions of a novel reduced-order simultaneous state and fault estimator are given based on the equivalent model reconstruction and optimisation of the parametric solution. Note that such a reduced-order design method can avoid traditional output equation reduction requirement, and has a wider application scope. Secondly, the robust preview tracking control policy is constructed by integrating state-feedback, preview action, and integral operation. Relying on augmentation modelling technique, a linear quadratic preview control design problem is transformed into an equivalent augmented state-feedback control design problem. Thirdly, the fault compensation is achieved by using estimated fault to accommodate fault influence. These involved designs are performed at the optimisation level, and thus guarantee the robust tracking performance of closed-loop systems. The effectiveness of the above conclusions is finally verified via two case studies.

Inspec keywords: linear quadratic control; H∞ optimisation; robust control; state estimation; closed loop systems; linear systems; discrete time systems; reduced order systems; fault tolerant control; state feedback; control system synthesis

Other keywords: linear quadratic preview control design problem; H∞ optimisation level; output equation reduction requirement; parametric solution optimisation; state-feedback integration; fault estimator based fault tolerant preview control; robust preview tracking control policy; equivalent model reconstruction; robust tracking performance; integrated fault tolerant preview tracking control framework; closed-loop systems; reduced-order simultaneous state estimator; discrete-time linear time-invariant systems; fault signal compensation; reduced-order design method; augmentation modelling technique; preview action; integral operation; equivalent augmented state-feedback control design problem

Subjects: Optimal control; Discrete control systems; Stability in control theory; Linear control systems; Control system analysis and synthesis methods; Optimisation techniques; Simulation, modelling and identification

References

    1. 1)
      • 35. Darouach, M.: ‘Observers and observer-based control for descriptor systems revisited’, IEEE Trans. Autom. Control, 2014, 59, (5), pp. 13671373.
    2. 2)
      • 22. Jia, Q., Chen, W., Zhang, Y., et al: ‘Fault reconstruction and fault-tolerant control via learning observers in Takagi–Sugeno fuzzy descriptor systems with time delays’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 38853895.
    3. 3)
      • 20. Zhang, K., Jiang, B., Shi, P., et al: ‘Fault estimation observer design for discrete-time systems in finite-frequency domain’, Int. J. Robust Nonlinear Control, 2015, 25, (9), pp. 13791398.
    4. 4)
      • 30. Gu, Y., Yang, G.H.: ‘Simultaneous actuator and sensor fault estimation for discrete-time Lipschitz nonlinear systems in finite-frequency domain’, Optim. Control Appl. Methods, 2018, 39, (1), pp. 410423.
    5. 5)
      • 7. Wang, D., Liao, F., Tomizuka, M.: ‘Adaptive preview control for piecewise discrete-time systems using multiple models’, Appl. Math. Model., 2016, 40, (23), pp. 99329946.
    6. 6)
      • 29. Li, Z., Wang, Z., Ding, D., et al: ‘H fault estimation with randomly occurring uncertainties, quantization effects and successive packet dropouts: the finite-horizon case’, Int. J. Robust Nonlinear Control, 2015, 25, (15), pp. 26712686.
    7. 7)
      • 24. Huang, S.J., Yang, G.H.: ‘Fault estimation for fuzzy delay systems: a minimum norm least squares solution approach’, IEEE Trans. Cyber., 2017, 47, (9), pp. 23892399.
    8. 8)
      • 4. Takaba, K.: ‘Robust servomechanism with preview action for polytopic uncertain systems’, Int. J. Robust Nonlinear Control, 2000, 10, (2), pp. 101111.
    9. 9)
      • 14. Han, K.Z., Feng, J.: ‘Robust periodically time-varying horizon finite memory fault detection filter design for polytopic uncertain discrete-time systems’, Int. J. Robust Nonlinear Control, 2017, 27, (17), pp. 41164137.
    10. 10)
      • 17. Ding, S.X.: ‘Model-based fault diagnosis techniques: design schemes, algorithms, and tools’ (Springer, Berlin, 2008).
    11. 11)
      • 38. Abbasi, A., Poshtan, J.: ‘Robust state estimation for a class of uncertain nonlinear systems: Comparison of two approaches’, ISA Trans., 2017, 68, pp. 4853.
    12. 12)
      • 37. Blanke, M., Kinnaert, M., Lunze, J., et al: ‘Diagnosis and fault-tolerant control’ (Springer, Berlin, 2006).
    13. 13)
      • 36. Han, J., Zhang, H., Wang, Y., et al: ‘Robust state/fault estimation and fault tolerant control for T–S fuzzy systems with sensor and actuator faults’, J. Franklin Inst., 2016, 353, (2), pp. 615641.
    14. 14)
      • 40. Zhang, L., Xu, S.Z., Zhao, H.T.: ‘Adaptive subspace predictive control with time-varying forgetting factor’, Int. J. Autom. Comput., 2014, 11, (2), pp. 205209.
    15. 15)
      • 3. Sheridan, T.B.: ‘Three models of preview control’, IEEE Trans. Hum. Factor Electron., 1966, 7, (2), pp. 91102.
    16. 16)
      • 15. Han, K.Z., Feng, J., Cui, X.: ‘Fault-tolerant optimised tracking control for unknown discrete-time linear systems using a combined reinforcement learning and residual compensation methodology’, Int. J. Syst. Sci., 2017, 48, (13), pp. 28112825.
    17. 17)
      • 12. Liao, F., Li, L.: ‘Robust preview control for uncertain discrete-time systems based on LMI’, Optim. Control Appl. Method., 2017, 38, (6), pp. 10221031.
    18. 18)
      • 1. Seierstad, A., Sydsaeter, K.: ‘Optimal control theory with economic applications’ (Elsevier, North-Holland, 1986).
    19. 19)
      • 25. Liu, X., Gao, Z., Chen, M.Z.Q.: ‘Takagi–Sugeno fuzzy model based fault estimation and signal compensation with application to wind turbines’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 56785689.
    20. 20)
      • 6. Zhang, H., Shi, Y., Mu, B.: ‘Optimal H-based linear-quadratic regulator tracking control for discrete-time Takagi-Sugeno fuzzy systems with preview actions’, J. Dyn. Syst. Meas. Control, 2013, 135, (4), pp. 044501.1044501.5.
    21. 21)
      • 28. Ding, D.W., Du, X., Xie, X., et al: ‘Fault estimation filter design for discrete-time Takagi–Sugeno fuzzy systems’, IET Control Theory Appl., 2016, 10, (18), pp. 24562465.
    22. 22)
      • 32. Qian, H., Peng, Y., Yang, G.: ‘Reduced-order observer-based fault estimation and fault-tolerant control for a class of discrete Lipschitz nonlinear systems’, Optim. Control Appl. Methods, 2016, 37, (6), pp. 12361262.
    23. 23)
      • 39. Tian, Z., Li, S., Wang, Y., et al: ‘SVM predictive control for calcination zone temperature in lime rotary kiln with improved PSO algorithm’, Trans. Inst. Meas. Control, 2017, doi: 0142331217716983.
    24. 24)
      • 5. Zhang, W., Bae, J., Tomizuka, M.: ‘Modified preview control for a wireless tracking control system with packet loss’, IEEE/ASME Trans. Mechatron., 2015, 20, (1), pp. 299307.
    25. 25)
      • 8. Silvestre, C., Cunha, R., Paulino, N., et al: ‘A bottom-following preview controller for autonomous underwater vehicles’, IEEE Trans. Control Syst. Technol., 2009, 17, (2), pp. 257266.
    26. 26)
      • 2. Birla, N., Swarup, A.: ‘Optimal preview control: a review’, Optim. Control Appl. Method., 2015, 36, (2), pp. 241268.
    27. 27)
      • 27. Buciakowski, M., Witczak, M., Puig, V., et al: ‘A bounded-error approach to simultaneous state and actuator fault estimation for a class of nonlinear systems’, J. Process Control, 2017, 52, pp. 1425.
    28. 28)
      • 21. Zhang, K., Jiang, B., Shi, P.: ‘Fault estimation observer design for discrete-time Takagi-Sugeno fuzzy systems based on piecewise Lyapunov functions’, IEEE Trans. Fuzzy Syst., 2012, 20, (1), pp. 192200.
    29. 29)
      • 13. Li, L., Liao, F.: ‘Parameter-dependent preview control with robust tracking performance’, IET Control Theory Appl., 2016, 11, (1), pp. 3846.
    30. 30)
      • 19. Zhang, K., Jiang, B., Shi, P.: ‘Observer-based integrated robust fault estimation and accommodation design for discrete-time systems’, Int. J. Control, 2010, 83, (6), pp. 11671181.
    31. 31)
      • 18. Gao, Z., Cecati, C., Ding, S.X.: ‘A survey of fault diagnosis and fault-tolerant techniques-Part I: Fault diagnosis with model-based and signal-based approaches’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 37573767.
    32. 32)
      • 16. Witczak, M.: ‘Fault diagnosis and fault-tolerant control strategies for non-linear systems’ (Springer, London, 2014).
    33. 33)
      • 26. Witczak, M., Buciakowski, M., Puig, V., et al: ‘An LMI approach to robust fault estimation for a class of nonlinear systems’, Int. J. Robust Nonlinear Control, 2016, 26, (7), pp. 15301548.
    34. 34)
      • 10. Ozdemir, A.A., Seiler, P., Balas, G.J.: ‘Design tradeoffs of wind turbine preview control’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 11431154.
    35. 35)
      • 33. Xie, X., Yue, D., Hu, S.: ‘Fault estimation observer design of discrete-time nonlinear systems via a joint real-time scheduling law’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (7), pp. 14511463.
    36. 36)
      • 31. Wang, H., Yang, G.H.: ‘Fault estimations for linear systems with polytopic uncertainties’, Int. J. Syst. Control Commun., 2008, 1, (1), pp. 5371.
    37. 37)
      • 11. Hazell, A., Limebeer, D.J.N.: ‘An efficient algorithm for discrete-time H preview control’, Automatica, 2008, 44, (9), pp. 24412448.
    38. 38)
      • 34. Darouach, M.: ‘H unbiased filtering for linear descriptor systems via LMI’, IEEE Trans. Autom. Control, 2009, 54, (8), pp. 19661972.
    39. 39)
      • 9. Wang, Y., Zheng, W.X., Zhang, H.: ‘Dynamic event-based control of nonlinear stochastic systems’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 65446551.
    40. 40)
      • 23. Li, X.J., Shi, C.X., Yang, G.H.: ‘Observer-based adaptive output-feedback fault-tolerant control of a class of complex dynamical networks’, IEEE Trans. Syst. Man Cyber. Syst., 2017, doi: 10.1109/TSMC.2017.2688581.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1280
Loading

Related content

content/journals/10.1049/iet-cta.2017.1280
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading