http://iet.metastore.ingenta.com
1887

Reduced-order simultaneous state and fault estimator based fault tolerant preview control for discrete-time linear time-invariant systems

Reduced-order simultaneous state and fault estimator based fault tolerant preview control for discrete-time linear time-invariant systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an integrated fault tolerant preview tracking control framework is proposed based on reduced-order simultaneous state and fault estimation, robust preview control and fault signal compensation. In general, this work consists of three key design parts. Firstly, the analysis and synthesis conditions of a novel reduced-order simultaneous state and fault estimator are given based on the equivalent model reconstruction and optimisation of the parametric solution. Note that such a reduced-order design method can avoid traditional output equation reduction requirement, and has a wider application scope. Secondly, the robust preview tracking control policy is constructed by integrating state-feedback, preview action, and integral operation. Relying on augmentation modelling technique, a linear quadratic preview control design problem is transformed into an equivalent augmented state-feedback control design problem. Thirdly, the fault compensation is achieved by using estimated fault to accommodate fault influence. These involved designs are performed at the optimisation level, and thus guarantee the robust tracking performance of closed-loop systems. The effectiveness of the above conclusions is finally verified via two case studies.

References

    1. 1)
      • 1. Seierstad, A., Sydsaeter, K.: ‘Optimal control theory with economic applications’ (Elsevier, North-Holland, 1986).
    2. 2)
      • 2. Birla, N., Swarup, A.: ‘Optimal preview control: a review’, Optim. Control Appl. Method., 2015, 36, (2), pp. 241268.
    3. 3)
      • 3. Sheridan, T.B.: ‘Three models of preview control’, IEEE Trans. Hum. Factor Electron., 1966, 7, (2), pp. 91102.
    4. 4)
      • 4. Takaba, K.: ‘Robust servomechanism with preview action for polytopic uncertain systems’, Int. J. Robust Nonlinear Control, 2000, 10, (2), pp. 101111.
    5. 5)
      • 5. Zhang, W., Bae, J., Tomizuka, M.: ‘Modified preview control for a wireless tracking control system with packet loss’, IEEE/ASME Trans. Mechatron., 2015, 20, (1), pp. 299307.
    6. 6)
      • 6. Zhang, H., Shi, Y., Mu, B.: ‘Optimal H-based linear-quadratic regulator tracking control for discrete-time Takagi-Sugeno fuzzy systems with preview actions’, J. Dyn. Syst. Meas. Control, 2013, 135, (4), pp. 044501.1044501.5.
    7. 7)
      • 7. Wang, D., Liao, F., Tomizuka, M.: ‘Adaptive preview control for piecewise discrete-time systems using multiple models’, Appl. Math. Model., 2016, 40, (23), pp. 99329946.
    8. 8)
      • 8. Silvestre, C., Cunha, R., Paulino, N., et al: ‘A bottom-following preview controller for autonomous underwater vehicles’, IEEE Trans. Control Syst. Technol., 2009, 17, (2), pp. 257266.
    9. 9)
      • 9. Wang, Y., Zheng, W.X., Zhang, H.: ‘Dynamic event-based control of nonlinear stochastic systems’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 65446551.
    10. 10)
      • 10. Ozdemir, A.A., Seiler, P., Balas, G.J.: ‘Design tradeoffs of wind turbine preview control’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 11431154.
    11. 11)
      • 11. Hazell, A., Limebeer, D.J.N.: ‘An efficient algorithm for discrete-time H preview control’, Automatica, 2008, 44, (9), pp. 24412448.
    12. 12)
      • 12. Liao, F., Li, L.: ‘Robust preview control for uncertain discrete-time systems based on LMI’, Optim. Control Appl. Method., 2017, 38, (6), pp. 10221031.
    13. 13)
      • 13. Li, L., Liao, F.: ‘Parameter-dependent preview control with robust tracking performance’, IET Control Theory Appl., 2016, 11, (1), pp. 3846.
    14. 14)
      • 14. Han, K.Z., Feng, J.: ‘Robust periodically time-varying horizon finite memory fault detection filter design for polytopic uncertain discrete-time systems’, Int. J. Robust Nonlinear Control, 2017, 27, (17), pp. 41164137.
    15. 15)
      • 15. Han, K.Z., Feng, J., Cui, X.: ‘Fault-tolerant optimised tracking control for unknown discrete-time linear systems using a combined reinforcement learning and residual compensation methodology’, Int. J. Syst. Sci., 2017, 48, (13), pp. 28112825.
    16. 16)
      • 16. Witczak, M.: ‘Fault diagnosis and fault-tolerant control strategies for non-linear systems’ (Springer, London, 2014).
    17. 17)
      • 17. Ding, S.X.: ‘Model-based fault diagnosis techniques: design schemes, algorithms, and tools’ (Springer, Berlin, 2008).
    18. 18)
      • 18. Gao, Z., Cecati, C., Ding, S.X.: ‘A survey of fault diagnosis and fault-tolerant techniques-Part I: Fault diagnosis with model-based and signal-based approaches’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 37573767.
    19. 19)
      • 19. Zhang, K., Jiang, B., Shi, P.: ‘Observer-based integrated robust fault estimation and accommodation design for discrete-time systems’, Int. J. Control, 2010, 83, (6), pp. 11671181.
    20. 20)
      • 20. Zhang, K., Jiang, B., Shi, P., et al: ‘Fault estimation observer design for discrete-time systems in finite-frequency domain’, Int. J. Robust Nonlinear Control, 2015, 25, (9), pp. 13791398.
    21. 21)
      • 21. Zhang, K., Jiang, B., Shi, P.: ‘Fault estimation observer design for discrete-time Takagi-Sugeno fuzzy systems based on piecewise Lyapunov functions’, IEEE Trans. Fuzzy Syst., 2012, 20, (1), pp. 192200.
    22. 22)
      • 22. Jia, Q., Chen, W., Zhang, Y., et al: ‘Fault reconstruction and fault-tolerant control via learning observers in Takagi–Sugeno fuzzy descriptor systems with time delays’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 38853895.
    23. 23)
      • 23. Li, X.J., Shi, C.X., Yang, G.H.: ‘Observer-based adaptive output-feedback fault-tolerant control of a class of complex dynamical networks’, IEEE Trans. Syst. Man Cyber. Syst., 2017, doi: 10.1109/TSMC.2017.2688581.
    24. 24)
      • 24. Huang, S.J., Yang, G.H.: ‘Fault estimation for fuzzy delay systems: a minimum norm least squares solution approach’, IEEE Trans. Cyber., 2017, 47, (9), pp. 23892399.
    25. 25)
      • 25. Liu, X., Gao, Z., Chen, M.Z.Q.: ‘Takagi–Sugeno fuzzy model based fault estimation and signal compensation with application to wind turbines’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 56785689.
    26. 26)
      • 26. Witczak, M., Buciakowski, M., Puig, V., et al: ‘An LMI approach to robust fault estimation for a class of nonlinear systems’, Int. J. Robust Nonlinear Control, 2016, 26, (7), pp. 15301548.
    27. 27)
      • 27. Buciakowski, M., Witczak, M., Puig, V., et al: ‘A bounded-error approach to simultaneous state and actuator fault estimation for a class of nonlinear systems’, J. Process Control, 2017, 52, pp. 1425.
    28. 28)
      • 28. Ding, D.W., Du, X., Xie, X., et al: ‘Fault estimation filter design for discrete-time Takagi–Sugeno fuzzy systems’, IET Control Theory Appl., 2016, 10, (18), pp. 24562465.
    29. 29)
      • 29. Li, Z., Wang, Z., Ding, D., et al: ‘H fault estimation with randomly occurring uncertainties, quantization effects and successive packet dropouts: the finite-horizon case’, Int. J. Robust Nonlinear Control, 2015, 25, (15), pp. 26712686.
    30. 30)
      • 30. Gu, Y., Yang, G.H.: ‘Simultaneous actuator and sensor fault estimation for discrete-time Lipschitz nonlinear systems in finite-frequency domain’, Optim. Control Appl. Methods, 2018, 39, (1), pp. 410423.
    31. 31)
      • 31. Wang, H., Yang, G.H.: ‘Fault estimations for linear systems with polytopic uncertainties’, Int. J. Syst. Control Commun., 2008, 1, (1), pp. 5371.
    32. 32)
      • 32. Qian, H., Peng, Y., Yang, G.: ‘Reduced-order observer-based fault estimation and fault-tolerant control for a class of discrete Lipschitz nonlinear systems’, Optim. Control Appl. Methods, 2016, 37, (6), pp. 12361262.
    33. 33)
      • 33. Xie, X., Yue, D., Hu, S.: ‘Fault estimation observer design of discrete-time nonlinear systems via a joint real-time scheduling law’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (7), pp. 14511463.
    34. 34)
      • 34. Darouach, M.: ‘H unbiased filtering for linear descriptor systems via LMI’, IEEE Trans. Autom. Control, 2009, 54, (8), pp. 19661972.
    35. 35)
      • 35. Darouach, M.: ‘Observers and observer-based control for descriptor systems revisited’, IEEE Trans. Autom. Control, 2014, 59, (5), pp. 13671373.
    36. 36)
      • 36. Han, J., Zhang, H., Wang, Y., et al: ‘Robust state/fault estimation and fault tolerant control for T–S fuzzy systems with sensor and actuator faults’, J. Franklin Inst., 2016, 353, (2), pp. 615641.
    37. 37)
      • 37. Blanke, M., Kinnaert, M., Lunze, J., et al: ‘Diagnosis and fault-tolerant control’ (Springer, Berlin, 2006).
    38. 38)
      • 38. Abbasi, A., Poshtan, J.: ‘Robust state estimation for a class of uncertain nonlinear systems: Comparison of two approaches’, ISA Trans., 2017, 68, pp. 4853.
    39. 39)
      • 39. Tian, Z., Li, S., Wang, Y., et al: ‘SVM predictive control for calcination zone temperature in lime rotary kiln with improved PSO algorithm’, Trans. Inst. Meas. Control, 2017, doi: 0142331217716983.
    40. 40)
      • 40. Zhang, L., Xu, S.Z., Zhao, H.T.: ‘Adaptive subspace predictive control with time-varying forgetting factor’, Int. J. Autom. Comput., 2014, 11, (2), pp. 205209.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1280
Loading

Related content

content/journals/10.1049/iet-cta.2017.1280
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address