access icon free Robust estimator design for periodic neural networks with polytopic uncertain weight matrices and randomly occurred sensor nonlinearities

This work addresses the problem of the estimator design for the periodic neural networks with polytopic uncertain connection weight matrices. The polytopic uncertainty is used to model the uncertain weight matrices. Bernoulli processes are employed to characterise the randomly occurred sensor nonlinearities, where the sensors are distributed in a large area. A Lyapunov function which depends both on the polytopic vertices and the period is constructed to improve the performance of the estimator. Sufficient conditions of the stochastic stability with performance for the augmented system are established, and the corresponding gains of the estimator are designed. Finally, an illustrative numerical example is given.

Inspec keywords: robust control; filtering theory; uncertain systems; control system synthesis; neurocontrollers; Lyapunov methods; matrix algebra

Other keywords: polytopic uncertain connection weight matrices; polytopic uncertain weight matrices; randomly occurred sensor nonlinearities; Lyapunov function; robust estimator design; polytopic vertices; sufficient conditions; periodic neural networks

Subjects: Stability in control theory; Neurocontrol; Algebra; Time-varying control systems; Control system analysis and synthesis methods

References

    1. 1)
      • 5. He, W., Yan, Z., Sun, C., et al: ‘Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer’, IEEE Trans. Cybern., 2017, 47, (10), pp. 34523465.
    2. 2)
      • 15. Chen, W.: ‘Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks’, IET Control Theory Appl., 2009, 3, (10), pp. 13831394.
    3. 3)
      • 1. Li, X., Fang, J., Li, H.: ‘Exponential stabilization of stochastic memristive neural networks under intermittent adaptive control’, IET Control Theory Appl., 2017, 11, (15), pp. 24322439.
    4. 4)
      • 35. Wu, Z.G., Shi, P., Su, H., et al: ‘Asynchronous l2l filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities’, Automatica, 2014, 50, (1), pp. 180186.
    5. 5)
      • 44. Fu, J., Ma, R., Chai, T.: ‘Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers’, Automatica, 2015, 54, (4), pp. 360373.
    6. 6)
      • 42. Ding, D., Wang, Z., Wei, G., et al: ‘Event-based security control for discrete-time stochastic systems’, IET Control Theory Appl., 2016, 10, (15), pp. 18081815.
    7. 7)
      • 16. Shao, Y.: ‘Exponential stability of periodic neural networks with impulsive effects and time-varying delays’, Appl. Math. Comput., 2011, 217, (16), pp. 68936899.
    8. 8)
      • 36. Dong, H., Wang, Z., Ho, D.W.C., et al: ‘Robust H filtering for Markovian jump systems with randomly occurring nonlinearities and sensor saturation: the finite-horizon case’, IEEE Trans. Signal Process., 2011, 59, (7), pp. 30483057.
    9. 9)
      • 19. Hu, Q., Jiang, B.: ‘Continuous finite-time attitude control for rigid spacecraft based on angular velocity observer’, IEEE Trans. Aerosp. Electron. Syst., DOI: 10.1109/TAES.2017.2773340.
    10. 10)
      • 11. Ji, C., Zhang, H.G., Wei, Y.: ‘LMI approach for global robust stability of Cohen–Grossberg neural networks with multiple delays’, Neurocomputing, 2008, 71, (4-6), pp. 475485.
    11. 11)
      • 17. Li, B., Song, Q.: ‘Some new results on periodic solution of Cohen-Grossberg neural network with impulses’, Neurocomputing, 2016, 177, pp. 401408.
    12. 12)
      • 7. Si, W., Dong, X., Yang, F.: ‘Adaptive neural control for stochastic pure-feedback non-linear time-delay systems with output constraint and asymmetric input saturation’, IET Control Theory Appl., 2017, 11, (14), pp. 22882298.
    13. 13)
      • 2. Wen, S., Chen, M.Z.Q., Zeng, Z., et al: ‘Adaptive neural-fuzzy sliding-mode fault-tolerant control for uncertain nonlinear systems’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (8), pp. 22682278.
    14. 14)
      • 31. Ma, L., Wang, Z., Lam, H.K.: ‘Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations’, IEEE Trans. Autom. Control, 2017, 62, (7), pp. 35243531.
    15. 15)
      • 39. Wei, G., Wang, Z., Shu, H., et al: ‘A delay-dependent approach to H filtering for stochastic delayed jumping systems with sensor non-linearities’, Int. J. Control, 2007, 80, (6), pp. 885897.
    16. 16)
      • 21. Yang, W., Yang, C., Shi, H., et al: ‘Stochastic link activation for distributed filtering under sensor power constraint’, Automatica, 2017, 75, pp. 109118.
    17. 17)
      • 10. Zhang, H., Wang, Z., Liu, D.: ‘A comprehensive review of stability analysis of continuous-time recurrent neural networks’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (7), pp. 12291262.
    18. 18)
      • 28. Lu, R., Xu, Y., Zhang, R.: ‘A new design of model predictive tracking control for networked control system under random packet loss and uncertainties’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 69997007.
    19. 19)
      • 30. Zhang, H., Zheng, X., Yan, H., et al: ‘Co-design of event-triggered and distributed H filtering for active semi-vehicle suspension systems’, IEEE/ASME Trans. Mechatronics, 2017, 22, (2), pp. 10471058.
    20. 20)
      • 22. Chen, Y., Zheng, W.X.: ‘Stochastic state estimation for neural networks with distributed delays and Markovian jump.’, Neural Netw., 2012, 25, (1), pp. 1420.
    21. 21)
      • 33. Deng, F., Guo, S., Zhou, R., et al: ‘Sensor multifault diagnosis with improved support vector machines’, IEEE Trans. Autom. Sci. Eng., 2017, 14, (2), pp. 10531063.
    22. 22)
      • 37. Shen, B., Wang, Z., Shu, H., et al: ‘Robust H finite-horizon filtering with randomly occurred nonlinearities and quantization effects’, Automatica, 2010, 46, (11), pp. 17431751.
    23. 23)
      • 8. Yang, C., Wang, X., Li, Z., et al: ‘Teleoperation control based on combination of wave variable and neural networks’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (8), pp. 21252136.
    24. 24)
      • 12. Wu, X.B., Liang, D.: ‘New sufficient conditions for absolute stability of neural networks’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1998, 45, (5), pp. 584586.
    25. 25)
      • 27. Deng, F., Guan, S., Yue, X., et al: ‘Energy-based sound source localization with low power consumption in wireless sensor networks’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 48944902.
    26. 26)
      • 25. Xu, Y., Wang, Z., Yao, D., et al: ‘State estimation for periodic neural networks with uncertain weight matrices and Markovian jump channel states’, IEEE Trans. Syst. Man Cybern. Syst., DOI: 10.1109/TSMC.2017.2708700.
    27. 27)
      • 13. Chen, J., Zeng, Z., Jiang, P.: ‘On the periodic dynamics of memristor-based neural networks with time-varying delays’, Inf. Sci., 2014, 279, (3), pp. 358373.
    28. 28)
      • 14. Duan, L., Huang, L.: ‘Periodicity and dissipativity for memristor-based mixed time-varying delayed neural networks via differential inclusions’, Neural Netw., 2014, 57, (9), pp. 1222.
    29. 29)
      • 41. Szajowski, K., Koning, W.: ‘Discrete-time Markovian jump linear systems’, Control and cybernetics, 1998, 27, (1).
    30. 30)
      • 23. Zhang, S., Ding, D., Wei, G., et al: ‘H state estimation for artificial neural networks over redundant channels’, Neurocomputing, 2017, 226, pp. 17125.
    31. 31)
      • 3. Shen, H., Zhu, Y., Zhang, L., et al: ‘Extended dissipative state estimation for Markov jump neural networks with unreliable links’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (2), pp. 346358.
    32. 32)
      • 6. Huang, T., Li, C., Duan, S., et al: ‘Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (6), pp. 866875.
    33. 33)
      • 9. He, W., Dong, Y., Sun, C.: ‘Adaptive neural impedance control of a robotic manipulator with input saturation’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (3), pp. 334344.
    34. 34)
      • 29. Yan, H., Zhang, H., Yang, F., et al: ‘Event-triggered asynchronous guaranteed cost control for markov jump discrete-time neural networks with distributed delay and channel fading’, IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2017.2732240.
    35. 35)
      • 24. Xu, Y., Lu, R., Tao, J., et al: ‘Nonfragile l2l state estimation for discrete-time neural networks with jumping saturations’, Neurocomputing, 2016, 207, pp. 1521.
    36. 36)
      • 32. Xu, Y., Lu, R., Peng, H., et al: ‘Filtering for fuzzy systems with multiplicative sensor noises and multi-density quantizer’, IEEE Trans. Fuzzy Syst., DOI: 10.1109/TFUZZ.2017.2702119.
    37. 37)
      • 34. Niu, Y., Ho, D.W.C., Li, C.W.: ‘Filtering for discrete fuzzy stochastic systems with sensor nonlinearities’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 971978.
    38. 38)
      • 18. Sato, R., Saito, T.: ‘Stabilization of desired periodic orbits in dynamic binary neural networks’, Neurocomputing, 2017, 248, pp. 1927.
    39. 39)
      • 43. Ding, D., Wang, Z., Ho, D.W.C., et al: ‘Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks’, Automatica, 2017, 78, (C), pp. 231240.
    40. 40)
      • 38. Liu, Y., Wang, Z., Liu, X.: ‘Global exponential stability of generalized recurrent neural networks with discrete and distributed delays’, Neural Netw., 2006, 19, (5), pp. 667675.
    41. 41)
      • 4. Xu, Y., Lu, R., Shi, P., et al: ‘Robust estimation for neural networks with randomly occurring distributed delays and Markovian jump coupling’, IEEE Trans. Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2016.2636325.
    42. 42)
      • 26. Yuan, Y., Yuan, H., Wang, Z., et al: ‘Optimal control for networked control systems with disturbances: a delta operator approach’, IET Control Theory Appl., 2017, 11, (9), pp. 13251332.
    43. 43)
      • 40. Zhang, L., Shi, P., Boukas, E.K., et al: ‘H model reduction for uncertain switched linear discrete-time systems’, Automatica, 2012, 44, (11), pp. 29442949.
    44. 44)
      • 20. Hu, Q., Jiang, B., Zhang, Y.: ‘Observer-based output feedback attitude stabilization for spacecraft with finite-time convergence’, IEEE Trans. Control Syst. Technol., DOI: 10.1109/TCST.2017.2780061.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1163
Loading

Related content

content/journals/10.1049/iet-cta.2017.1163
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading