Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Gain-scheduling LPV control for autonomous vehicles including friction force estimation and compensation mechanism

This study presents a solution for the integrated longitudinal and lateral control problem of urban autonomous vehicles. It is based on a gain-scheduling linear parameter-varying (LPV) control approach combined with the use of an Unknown Input Observer (UIO) for estimating the vehicle states and friction force. Two gain-scheduling LPV controllers are used in cascade configuration that use the kinematic and dynamic vehicle models and the friction and observed states provided by the Unknown Input Observer (UIO). The LPV–UIO is designed in an optimal manner by solving a set of linear matrix inequalities (LMIs). On the other hand, the design of the kinematic and dynamic controllers lead to solve separately two LPV–Linear Quadratic Regulator problems formulated also in LMI form. The UIO allows to improve the control response in disturbance affected scenarios by estimating and compensating the friction force. The proposed scheme has been integrated with a trajectory generation module and tested in a simulated scenario. A comparative study is also presented considering the cases that the friction force estimation is used or not to show its usefulness.

References

    1. 1)
      • 13. Dixon, W.E., Dawson, D.M., Zergeroglu, E., et al: ‘Nonlinear control of wheeled mobile robots’ (Springer, London, 2000).
    2. 2)
      • 21. Gao, Y., Gray, A., Tseng, H.E., et al: ‘A tube-based robust nonlinear predictive control approach to semi-autonomous ground vehicles’, Veh. Syst. Dyn., Int. J. Veh. Mech. Mob., 2014, 52, (6), pp. 802823.
    3. 3)
      • 6. Polack, P., D'Andréa-Novel, B., Fliess, M., et al: ‘Finite-time stabilization of longitudinal control for autonomous vehicles via a model-free approach’, IFAC-PapersOnLine, 2017, 50, (1), pp. 1253312538.
    4. 4)
      • 14. Németh, B., Gáspár, P., Bokor, J.: ‘LPV-based integrated vehicle control design considering the nonlinear characteristics of the tire’. American Control Conf. (ACC), 2016, Boston, 2016, pp. 68936898.
    5. 5)
      • 23. Bascetta, L., Ferretti, G., Matteucci, M., et al: ‘LFT-based MPC control of an autonomous vehicle’, IFAC-PapersOnLine, 2016, 49, (15), pp. 712.
    6. 6)
      • 3. Warrendale, P.: ‘Levels of automation for on-road vehicles, Society of Automotive Engineers (SAE)’, 2014. Available at https://www.sae.org/misc/pdfs/automated_driving.pdf, Accessed date: 23/08/2017.
    7. 7)
      • 27. Yi, K., Hedrick, K., Lee, S.-C.: ‘Estimation of tire-road friction using observer based identifiers’, Veh. Syst. Dyn., 1999, 31, (4), pp. 233261.
    8. 8)
      • 2. United Nations, World Urbanization Prospects, United Nations, Department of Economic and Social Affairs, Population Division’, 2014. Available at https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.Pdf, Accessed date: 20/04/2018.
    9. 9)
      • 17. González, R., Fiacchini, M., Guzmán, J.L., et al: ‘Robust tube-based predictive control for mobile robots in off-road conditions’, Robot. Auton. Syst., 2011, 59, (10), pp. 711726.
    10. 10)
      • 29. Dakhlallah, J., Glaser, S., Mammar, S., et al: ‘Tire-road forces estimation using extended kalman filter and sideslip angle evaluation’. American Control Conf., 2008, Seattle, Washington, USA, 2008, pp. 45974602.
    11. 11)
      • 20. Schwarting, W., Alonso-Mora, J., Pauli, L., et al: ‘Parallel autonomy in automated vehicles: safe motion generation with minimal intervention’. 2017 IEEE Int. Conf. on Robotics and Automation (ICRA), Singapore, 2017, pp. 19281935.
    12. 12)
      • 34. Franklin, G.F., Powell, J.D., Workman, M.L.: ‘Digital control of dynamic systems’, vol. 3 (Addison-wesley, Menlo Park, CA, 1998).
    13. 13)
      • 16. Olsson, C.: ‘Model complexity and coupling of longitudinal and lateral control in autonomous vehicles using model predictive control’, 2015.
    14. 14)
      • 18. Nahidi, A., Kasaiezadeh, A., Khosravani, S., et al: ‘Modular integrated longitudinal and lateral vehicle stability control for electric vehicles’, Mechatronics, 2017, 44, pp. 6070.
    15. 15)
      • 22. Carvalho, A., Lefévre, S., Schildbach, G., et al: ‘Automated driving: the role of forecasts and uncertainty – a control perspective’, Eur. J. Control, 2015, 24, pp. 1432.
    16. 16)
      • 19. Farrokhsiar, M., Pavlik, G., Najjaran, H.: ‘An integrated robust probing motion planning and control scheme: a tube-based MPC approach’, Robot. Auton. Syst., 2013, 61, (12), pp. 13791391.
    17. 17)
      • 30. Rotondo, D., Cristofaro, A., Johansen, T.A., et al: ‘Diagnosis of icing and actuator faults in UAVs using LPV unknown input observers’, J. Intell. Robot. Syst., 2017, pp. 115.
    18. 18)
      • 25. Ostertag, E.: ‘Mono-and multivariable control and estimation: linear, quadratic and LMI methods’ (Springer Science & Business Media, Strasbourg, France, 2011).
    19. 19)
      • 33. Bianco, C.G.L., Piazzi, A., Romano, M.: ‘Velocity planning for autonomous vehicles’. IEEE Intelligent Vehicles Symp., Parma, Italy, 2004.
    20. 20)
      • 24. Rotondo, D.: ‘Advances in gain-scheduling and fault tolerant control techniques’ (Springer, Barcelona, Spain, 2017).
    21. 21)
      • 31. Apkarian, P., Gahinet, P., Becker, G.: ‘Self-scheduled H infinite control of linear parameter-varying systems: a design example’, Automatica, 1995, 31, (9), pp. 12511261.
    22. 22)
      • 4. Paden, B., Čáp, M., Yong, S.Z., et al: ‘A survey of motion planning and control techniques for self-driving urban vehicles’, IEEE Trans. Intell. Veh., 2016, 1, (1), pp. 3355.
    23. 23)
      • 15. Gáspár, P., Szabó, Z., Bokor, J., et al: ‘Robust control design for active driver assistance systems’ (Springer, Switzerland, 2016), DOI: 10.1007/978-3-319-46126-7.
    24. 24)
      • 1. Van Woensel, L., Archer, G., Panades-Estruch, L., et al: ‘Ten technologies which could change our lives’ (European Union, Brussels, Belgium, 2015).
    25. 25)
      • 32. Pletschen, N., Diepold, K.J.: ‘Nonlinear state estimation for suspension control applications: a Takagi–Sugeno Kalman filtering approach’, Control Eng. Pract., 2017, 61, pp. 292306.
    26. 26)
      • 11. Indiveri, G.: ‘Kinematic time-invariant control of a 2D nonholonomic vehicle’. Proc. 38th IEEE Conf. Decision and Control, Phoenix, AZ, USA, 1999, vol. 3, pp. 21122117.
    27. 27)
      • 12. Blažič, S.: ‘Takagi–Sugeno vs. Lyapunov-based tracking control for a wheeled mobile robot’, WSEAS Trans. Syst. Control, 2010, 5, (8), pp. 667676.
    28. 28)
      • 7. Fergani, S., Sename, O., Dugard, L.: ‘An LPV/H integrated vehicle dynamic controller’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 18801889.
    29. 29)
      • 5. Chen, H., Guo, L., Qu, T., et al: ‘Optimal control methods in intelligent vehicles’, J. Control Decis., 2017, 4, (1), pp. 3256.
    30. 30)
      • 28. Svendenius, J.: ‘Tire modeling and friction estimation’. PhD thesis, 2007.
    31. 31)
      • 10. Alcalá, E., Sellart, L., Puig, V., et al: ‘Comparison of two non-linear model-based control strategies for autonomous vehicles’. 2016 24th Mediterranean Conf. Control and Automation (MED), Athens (Greece), 2016, pp. 846851.
    32. 32)
      • 9. Nawash, N.: ‘H-infinity control of an autonomous mobile robot’. Master of science thesis, Cleveland State University, 2005.
    33. 33)
      • 26. Duan, G.-R., Yu, H.-H.: ‘LMIs in control systems: analysis, design and applications’ (CRC press, New York, USA, 2013).
    34. 34)
      • 8. Alcala, E., Puig, V., Quevedo, J., et al: ‘Autonomous vehicle control using a kinematic Lyapunov-based technique with LQR-LMI tuning’, Control Eng. Pract., 2018, 73, pp. 112.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1154
Loading

Related content

content/journals/10.1049/iet-cta.2017.1154
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address