Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free State estimation and fault reconstruction with integral measurements under partially decoupled disturbances

This study is concerned with the state estimation and fault reconstruction problems for a class of discrete systems with integral measurements under partially decoupled disturbances. The considered integral measurements, as functions of the system states over a period of time, reflect the interval time between sample collections and real-time signal processing. Moreover, the process disturbances are allowed to be partially decoupled in the observer design. An augmented state vector is constructed, which consists of the current system state, the delayed system state and the additive fault, and the resultant augmented system is described in a singular form. Then, an unknown input observer is obtained that decouples partial disturbances and attenuates the effect from the remaining undecouplable disturbances. The existence conditions of the desired observer are thoroughly investigated and an algorithm for designing the observer gains is also provided. Finally, a numerical example is presented to show the effectiveness of the proposed method.

References

    1. 1)
      • 1. Mohanty, S., Gupta, K.K., Raju, K.S.: ‘Effect of unitary sample shifted Laplacian and rectangular distributions in bearing fault identifications of induction motor’, IET Sci. Meas. Technol., 2017, 11, (4), pp. 516524.
    2. 2)
      • 3. Liu, X., Gao, Z., Chen, M.Z.Q.: ‘Takagi–Sugeno fuzzy model based fault estimation and signal compensation with application to wind turbines’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 56785689.
    3. 3)
      • 24. Chan, J.C.J., Tan, C.P., Trinh, H.: ‘Robust fault reconstruction for a class of infinitely unobservable descriptor systems’, Int. J. Syst. Sci., 2017, 48, (8), pp. 16461655.
    4. 4)
      • 9. Xie, X., Yue, D., Hu, S.: ‘Fault estimation observer design of discrete-time nonlinear systems via a joint real-time scheduling law’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (7), pp. 14511463.
    5. 5)
      • 38. Guo, Y., Huang, B.: ‘State estimation incorporating infrequent, delayed and integral measurements’, Automatica, 2015, 58, pp. 3238.
    6. 6)
      • 31. Liu, X., Gao, X., Han, J.: ‘Robust unknown input observer based fault detection for high-order multi-agent systems with disturbances’, ISA Trans., 2016, 61, pp. 1528.
    7. 7)
      • 20. Zhai, D., Lu, A.-Y., Dong, J., et al: ‘Event triggered H_/H fault detection and isolation for T–S fuzzy systems with local nonlinear models’, Signal Process., 2017, 138, pp. 244255.
    8. 8)
      • 26. Chen, J., Patton, R.J., Zhang, H.Y.: ‘Design of unknown input observers and robust fault-detection filters’, Int. J. Control, 1996, 63, (1), pp. 85105.
    9. 9)
      • 2. Sadeghzadeh-Nokhodberiz, N., Poshtan, J.: ‘Distributed interacting multiple filters for fault diagnosis of navigation sensors in a robotic system’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (7), pp. 13831393.
    10. 10)
      • 7. Fekih, A.: ‘Fault-tolerant flight control design for effective and reliable aircraft systems’, J. Control Decis., 2014, 1, (4), pp. 299316.
    11. 11)
      • 33. Ting, H.-C., Chang, J.-L., Chen, Y.-P.: ‘Proportional–derivative unknown input observer design using descriptor system approach for non-minimum phase systems’, Int. J. Control Autom. Syst., 2011, 9, (5), pp. 850856.
    12. 12)
      • 40. He, X., Wang, Z., Liu, Y., et al: ‘Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach’, IEEE Trans. Ind. Inf., 2013, 9, (3), pp. 16701679.
    13. 13)
      • 18. Li, X., Liu, H.H.T.: ‘Characterization of H_ index for linear time-varying systems’, Automatica, 2013, 49, (5), pp. 14491457.
    14. 14)
      • 5. Li, Y., Yang, Y., Li, G., et al: ‘A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection’, Mech. Syst. Signal Process., 2017, 91, pp. 295312.
    15. 15)
      • 16. Zhong, M., Guo, J., Guo, D., et al: ‘An extended Hi/H optimization approach to fault detection of INS/GPS-integrated system’, IEEE Trans. Instrum. Meas., 2016, 65, (11), pp. 24952504.
    16. 16)
      • 8. Tao, G.: ‘Direct adaptive actuator failure compensation control: a tutorial’, J. Control Decis., 2014, 1, (1), pp. 75101.
    17. 17)
      • 36. Markov, E.V., Mikhailov, O.M.: ‘Integral measurements of the color of nanodimensional radiators’, Meas. Tech., 2014, 57, (9), pp. 990996.
    18. 18)
      • 10. Gao, M., Sheng, L., Zhou, D., et al: ‘Event-based fault detection for T–S fuzzy systems with packet dropouts and (x, v)-dependent noises’, Signal Process., 2017, 138, pp. 211219.
    19. 19)
      • 17. Khan, A.Q., Abid, M., Ding, S.X.: ‘Fault detection filter design for discrete-time nonlinear systems – a mixed H_/H optimization’, Syst. Control Lett., 2014, 67, (1), pp. 4654.
    20. 20)
      • 30. Hassanabadia, A.H., Shafieea, M., Puig, V.: ‘UIO design for singular delayed LPV systems with application to actuator fault detection and isolation’, Int. J. Syst. Sci., 2016, 47, (1), pp. 107121.
    21. 21)
      • 22. Witczak, M., Buciakowski, M., Puig, V., et al: ‘An LMI approach to robust fault estimation for a class of nonlinear systems’, Int. J. Robust Nonlinear Control, 2016, 26, (7), pp. 15301548.
    22. 22)
      • 14. Liu, Y., Wang, Z., He, X., et al: ‘Filtering and fault detection for nonlinear systems with polynomial approximation’, Automatica, 2015, 54, pp. 348359.
    23. 23)
      • 32. Bezzaoucha, S., Marx, B., Maquin, D., et al: ‘On the unknown input observer design: a decoupling class approach’. Proc. IEEE Int. Conf. Control and Automation, Santiago, Chile, December 2011, pp. 602607.
    24. 24)
      • 34. Gao, Z., Liu, X., Chen, M.Z.Q.: ‘Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 25373547.
    25. 25)
      • 35. Tripathi, S., Gehlot, M., Hussain, J.K., et al: ‘Field integral measurement of a six period undulator in a pulsed wire set up’, Opt. Commun., 2011, 284, (1), pp. 350357.
    26. 26)
      • 29. Rotondo, D., Witczak, M., Puig, V., et al: ‘Robust unknown input observer for state and fault estimation in discrete-time Takagi–Sugeno systems’, Int. J. Syst. Sci., 2016, 47, (14), pp. 34093424.
    27. 27)
      • 21. Sheng, L., Zhang, W., Gao, M.: ‘Relationship between Nash equilibrium strategies and H2/H control of stochastic Markov jump systems with multiplicative noise’, IEEE Trans. Autom. Control, 2014, 59, (9), pp. 25922597.
    28. 28)
      • 27. Zarei, Z., Shokri, E.: ‘Robust sensor fault detection based on nonlinear unknown input observer’, Measurement, 2014, 48, pp. 355367.
    29. 29)
      • 25. Zhang, K., Jiang, B., Cocquempot, V.: ‘Robust fault estimation observer design with finite-time convergence specification’, IET Control Theory Appl., 2017, 11, (1), pp. 19.
    30. 30)
      • 19. Li, Z., Mazars, E., Jaimoukha, I.: ‘State-space solution to the H_/H fault-detection problem’, Int. J. Robust Nonlinear Control, 2012, 22, (3), pp. 282299.
    31. 31)
      • 42. Caballero-Águila, R., Hermoso-Carazo, A., Linares-Pérez, J.: ‘Distributed fusion filters from uncertain measured outputs in sensor networks with random packet losses’, Inf. Fusion, 2017, 34, pp. 7079.
    32. 32)
      • 44. Zhang, X., Liu, X., Li, Y.: ‘Adaptive fuzzy tracking control for nonlinear strict-feedback systems with unmodelled dynamics via backstepping technique’, Neurocomputing, 2017, 235, pp. 182191.
    33. 33)
      • 12. Wang, G., Yi, C.: ‘Fault estimation for nonlinear systems by an intermediate estimator with stochastic failure’, Nonlinear Dyn., 2017, 89, (2), pp. 11951204.
    34. 34)
      • 15. Liu, Y., Wang, Z., He, X., et al: ‘A class of observer-based fault diagnosis schemes under closed-loop control: performance evaluation and improvement’, IET Control Theory Appl., 2017, 11, (1), pp. 135141.
    35. 35)
      • 41. Zhang, Y., Wang, Z., Ma, L.: ‘Variance-constrained state estimation for networked multi-rate systems with measurement quantization and probabilistic sensor failures’, Int. J. Robust Nonlinear Control, 2016, 26, (16), pp. 35073523.
    36. 36)
      • 4. Jiang, W., Mu, L., Zhang, X.: ‘A new method of power system fault recording based on compressed sensing’, IEEE Trans. Electr. Electron. Eng., 2017, 12, (4), pp. 546552.
    37. 37)
      • 13. Turksoy, K., Roy, A., Cinar, A.: ‘Real-time model-based fault detection of continuous glucose sensor measurements’, IEEE Trans. Biomed. Eng., 2017, 64, (7), pp. 14371445.
    38. 38)
      • 28. Ziyabari, S.H.S., Shoorehdeli, F.: ‘Robust fault diagnosis scheme in a class of nonlinear system based on UIO and fuzzy residual’, Int. J. Control Autom. Syst., 2017, 15, (3), pp. 11451154.
    39. 39)
      • 6. Cai, B., Zhao, Y., Liu, H., et al: ‘A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 55905600.
    40. 40)
      • 43. Geng, H., Wang, Z., Liang, Y., et al: ‘State estimation for asynchronous sensor systems with Markov jumps and multiplicative noises’, Inf. Sci., 2017, 417, pp. 119.
    41. 41)
      • 23. Huang, S.-J., Yang, G.-H.: ‘Input-output based fault estimation for linear systems with partially dynamic uncertainty and actuator faults’, Int. J. Robust Nonlinear Control, 2016, 26, (16), pp. 36113630.
    42. 42)
      • 37. Casolia, P., Authiera, N., Jacqueta, X., et al: ‘Characterization of the Caliban and Prospero critical assemblies neutron spectra for integral measurements experiments’, Nucl. Data Sheets, 2014, 116, pp. 554557.
    43. 43)
      • 39. Koenig, D., Bedjaoui, N., Litrico, X.: ‘Unknown input observers design for time-delay systems application to an open-channel’. Proc. 44th European Control Conf. Decision and Control, Seville, Spain, December 2005, pp. 57945799.
    44. 44)
      • 11. Meseguer, J., Puig, V., Escobet, T.: ‘Approximating fault detection linear interval observers using λ-order interval predictors’, Int. J. Adapt. Control Signal Process., 2017, 31, (7), pp. 10401060.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1119
Loading

Related content

content/journals/10.1049/iet-cta.2017.1119
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address