access icon free Fixed-time leader–follower consensus tracking of second-order multi-agent systems with bounded input uncertainties using non-singular terminal sliding mode technique

This study investigates the fixed-time consensus tracking problem for second-order multi-agent systems. A new fixed-time stability condition and a new non-singular-terminal sliding surface are introduced. Using Gudermannian function, the fixed-time stability of sliding mode dynamics is proved and its guaranteed convergence time is obtained. Based on this condition and utilising the proposed surface, a non-singular sliding mode distributed protocol is proposed in which the guaranteed convergence times of reaching and sliding modes exist as design parameters. By employing the proposed protocol, fixed-time leader–follower consensus tracking for uncertain second-order multi-agent systems before a prescribed time by only using relative information can be accomplished. Simulation results are reported to show the effectiveness of the proposed method.

Inspec keywords: uncertain systems; control system synthesis; multi-agent systems; distributed control; stability; variable structure systems; convergence

Other keywords: nonsingular terminal sliding mode technique; convergence time; fixed-time leader-follower consensus tracking; Gudermannian function; uncertain second-order multiagent systems; nonsingular-terminal sliding surface; design parameters; sliding mode dynamics; fixed-time stability; nonsingular sliding mode distributed protocol; bounded input uncertainties; relative information; fixed-time stability condition

Subjects: Multivariable control systems; Control system analysis and synthesis methods; Stability in control theory

References

    1. 1)
      • 23. Parsegov, S., Polyakov, A., Shcherbakov, P.: ‘Fixed-time consensus algorithm for multi-agent systems with integrator dynamics’. 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems, 2013, pp. 110115.
    2. 2)
      • 32. Hardy, G.H., Littlewood, J.E., Polya, G.: ‘Inequalities’ (Cambridge University Press, Cambridge, 1952).
    3. 3)
      • 1. Olfati-Saber, R., Murray, R.: ‘Consensus problems in networks of agents with switching topology and time delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533. doi: 10.1109/TAC.2004.834113.
    4. 4)
      • 6. Tian, Y., Zhang, Y.: ‘High-order consensus of heterogeneous multi-agent systems with unknown communications delays’, Automatica, 2012, 48, (6), pp. 12051212.
    5. 5)
      • 9. Mu, B., Li, H., Ding, J., et al: ‘Consensus in second-order multiple flying vehicles with random delays governed by a Markov chain’, J. the Franklin Inst., 2015, 352, (9), pp. 36283644. DOI: doi.org/10.1016/j.jfranklin.2015.01.034.
    6. 6)
      • 2. Ren, W., Atkins, E.: ‘Distributed multi-vehicle coordinated control via local information exchange’, Int. J. Robust Nonlinear Control, 2007, 17, (10–11), pp. 10021033. DOI: 10.1002/rnc.1147.
    7. 7)
      • 5. Lin, P., Jia, Y.: ‘Multi-agent consensus with diverse time-delays and jointly-connected topologies’, Automatica, 2011, 47, (4), pp. 848856.
    8. 8)
      • 27. Zuo, Z.: ‘Nonsingular fixed-time consensus tracking for second-order multi-agent networks’, Automatica, 2015, 54, pp. 305309.
    9. 9)
      • 33. Zhang, H., Lewis, F.L.: ‘Adaptive cooperative tracking control of high-order nonlinear systems with unknown dynamics’, Automatica, 2012, 48, (7), pp. 14321439.
    10. 10)
      • 15. Li, S., Du, H., Lin, X.: ‘Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics’, Automatica, 2011, 47, (8), pp. 17061712.
    11. 11)
      • 25. Zuo, Z., Tie, L.: ‘Distributed robust finite-time nonlinear consensus protocols for multi-agent systems’, Int. J. Syst. Sci., 2016, 47, (6), pp. 13661375.
    12. 12)
      • 28. Fu, J., Wang, J.: ‘Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties’, Syst. Control Lett., 2016, 93, pp. 112.
    13. 13)
      • 8. Yang, S., Xu, J., Li, X.: ‘Iterative learning control with input sharing for multi-agent consensus tracking’, Syst. Control Lett., 2016, 94, pp. 97106.
    14. 14)
      • 7. Wen, G., Hu, G., Yu, W., et al: ‘Consensus tracking for high-order multi-agent systems with switching directed topologies and occasionally missing control inputs’, Syst. Control Lett., 2013, 62, (12) pp. 11511158.
    15. 15)
      • 22. Polyakov, A.: ‘Nonlinear feedback design for fixed-time stabilization of linear control systems’, IEEE Trans. Autom. Control, 2012, 57, (8), pp. 21062110. doi: 10.1109/TAC.2011.2179869.
    16. 16)
      • 20. Andrieu, V., Praly, L., Astolfi, A.: ‘Homogeneous approximation, recursive observer design, and output feedback’, SIAM J. Control Optim., 2008, 47, (4), pp. 18141850. doi: 10.1137/060675861.
    17. 17)
      • 30. Fu, J., Wang, J.Z.: ‘Finite-time consensus for multi-agent systems with globally bounded convergence time under directed communication graph’, Int. J. Control, 2016, 90, (7), pp. 14201427.
    18. 18)
      • 16. Zhao, L.W., Hua, C.C.: ‘Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM’, Nonlinear Dyn., 2014, 75, (1), pp. 311318. doi: 10.1007/s11071-013-1067-5.
    19. 19)
      • 17. Yu, S., Long, X.: ‘Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode’, Automatica, 2015, 54, pp. 158165.
    20. 20)
      • 11. Bhat, S.P., Bernstein, D.S.: ‘Finite-time stability of continuous autonomous systems’, SIAM J. Control Optim., 2000, 38, (3), pp. 751766. doi: 10.1137/S0363012997321358.
    21. 21)
      • 31. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., et al: ‘NIST handbook of mathematical functions’ (Cambridge University Press, Cambridge, 2010).
    22. 22)
      • 24. Zuo, Z., Tie, L.: ‘A new class of finite-time nonlinear consensus protocols for multi-agent systems’, Int. J. Control, 2014, 87, (2), pp. 363370.
    23. 23)
      • 21. Cruz-Zavala, E., Moreno, J.A., Fridman, L.: ‘Uniform second-order observer for mechanical systems’. IEEE 11th Int. Workshop on Variable Structure Systems, 2010, pp. 1419.
    24. 24)
      • 29. Tian, B., Zuo, Z., Wang, H.: ‘Leader-follower fixed-time consensus of multi-agent systems with high-order integrator dynamics’, Int. J. Control, 2016, 90, (9), pp. 18071817.
    25. 25)
      • 14. Wang, L., Xiao, F.: ‘Finite-time consensus problems for networks of dynamic agents’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 950955. doi: 10.1109/TAC.2010.2041610.
    26. 26)
      • 19. Zhou, Y., Yu, X., Sun, C., et al: ‘Higher order finite time consensus protocol for heterogeneous multi-agent systems’, Int. J. Control, 2015, 88, (2), pp. 285294.
    27. 27)
      • 12. Bhat, S.P., Bernstein, D.S.: ‘Geometric homogeneity with applications to finite-time stability’, Math. Control Signals Syst., 2005, 17, (2), pp. 101127. doi: 10.1007/s00498-005-0151-x.
    28. 28)
      • 13. Cortes, J.: ‘Finite-time convergent gradient flows with applications to network consensus’, Automatica, 2006, 42, (11), pp. 19932000.
    29. 29)
      • 4. Song, Q., Cao, J., Yu, W.: ‘Second-order leader-following consensus of nonlinear multi-agent systems via pinning control’, Syst. Control Lett., 2010, 59, (9), pp. 553562.
    30. 30)
      • 3. Dong, W., Farrell, A.: ‘Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty’, Automatica, 2009, 45, (3), pp. 706710.
    31. 31)
      • 26. Meng, D., Zuo, Z.: ‘Signed-average consensus for networks of agents: a nonlinear fixed-time convergence protocol’, Nonlinear Dyn., 2016, 85, (1), pp. 155165. doi: 10.1007/s11071-016-2675-7.
    32. 32)
      • 18. Khoo, S., Xie, L., Zhao, S., et al: ‘Multi-surface sliding mode control for fast finite-time leader-follower consensus with high order SISO uncertain nonlinear agents’, Int. J. Robust Nonlinear Control, 2014, 24, (16), pp. 23882404. DOI: 10.1002/rnc.2997.
    33. 33)
      • 10. Mu, B., Chen, J., Shi, Y., et al: ‘Design and implementation of nonuniform sampling cooperative control on a group of two-wheeled mobile robots’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 50355044. doi: 10.1109/TIE.2016.2638398.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1094
Loading

Related content

content/journals/10.1049/iet-cta.2017.1094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading