access icon free Containment control for high-order multi-agent systems with heterogeneous time delays

This study addresses the containment control problem for high-order multi-agent systems with heterogeneous time delays. Here the authors consider two cases: the leaders are stationary and the leaders are dynamic. Based on the distributed containment control protocols with proper gain parameters, they utilise the properties of the product of infinite matrices to derive some sufficient conditions. The obtained results guarantee that all the followers can asymptotically converge to a convex hull spanned by those of the leaders under the proper gain parameters if the communication topology contains a directed spanning forest rooted at the leaders. Finally, some numerical simulations are presented to illustrate the effectiveness of their theoretical results.

Inspec keywords: multi-agent systems; matrix algebra; delays

Other keywords: high-order multi-agent systems; heterogeneous time delays; infinite matrices; containment control problem; communication topology

Subjects: Distributed parameter control systems; Linear algebra (numerical analysis); Multivariable control systems

References

    1. 1)
      • 7. Wu, J., Shi, Y.: ‘Consensus in multi-agent systems with random delays governed by a Markov chain’, Syst. Control Lett., 2011, 60, (10), pp. 863870.
    2. 2)
      • 1. Beard, R.W., Mclain, T.W., Goodrich, M., et al: ‘Coordinated target assignment and intercept for unmanned airvehicles’, IEEE Trans. Robot. Autom., 2002, 18, (6), pp. 911922.
    3. 3)
      • 21. Li, H., Liao, X., Huang, T., et al: ‘Event-triggering sampling based leader-following consensus in second-order multi-agent systems’, IEEE Trans. Autom. Control, 2015, 60, (7), pp. 19982003.
    4. 4)
      • 14. Tian, Y., Zhang, Y.: ‘High-order consensus of heterogeneous multi-agent systems with unknown communication delays’, Automatica, 2011, 48, (6), pp. 12051212.
    5. 5)
      • 5. Qin, J., Gao, H., Zheng, W.: ‘Second-order consensus for multi-agent systems with switching topology and communication delay’, Syst. Control Lett., 2011, 60, (6), pp. 390397.
    6. 6)
      • 23. Liu, H., Xie, G., Wang, L.: ‘Necessary and sufficient conditions for containment control of networked multi-agent systems’, Automatica, 2012, 48, (7), pp. 14151422.
    7. 7)
      • 13. Chen, J., Guan, Z., He, D., et al: ‘Multi-consensus for second-order multi-agent systems based on sampled position information’, IET Control Theory Appl., 2014, 9, (3), pp. 358366.
    8. 8)
      • 15. He, W., Cao, J.: ‘Consensus control for high-order multi-agent systems’, IET Control Theory Appl., 2011, 5, (1), pp. 231238.
    9. 9)
      • 6. Yu, J., Wang, L: ‘Group consensus in multi-agent systems with switching topologies and communication delays’, Syst. Control Lett., 2009, 59, (6), pp. 26522657.
    10. 10)
      • 34. Meng, Z., Ren, W., You, Z.: ‘Distributed finite-time attitude containment control for multiple rigid bodies’, Automatica, 2010, 46, (12), pp. 20922099.
    11. 11)
      • 4. Olfati-Saber, R.: ‘Flocking for multi-agent dynamic systems: algorithms and theory’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 401420.
    12. 12)
      • 36. Wang, Q., Fu, J., Wang, J.: ‘Fully distributed containment control of high-order multi-agent systems with nonlinear dynamics’, Syst. Control Lett., 2017, 99, pp. 3339.
    13. 13)
      • 27. Jiang, F., Wang, L., Xie, G.: ‘Consensus of high-order dynamic multi-agent systems with switching topology and time-varying delays’, Control Theory Technol., 2010, 8, (1), pp. 5260.
    14. 14)
      • 18. Qin, J., Yu, C., Gao, H.: ‘Coordination for linear multiagent systems with dynamic interaction topology in the leader-following framework’, IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 24122422.
    15. 15)
      • 3. Lin, Z., Francis, B., Maggiore, M.: ‘Necessary and sufficient graphical conditions for formation control of unicycles’, IEEE Trans. Autom. Control, 2005, 50, (1), pp. 121127.
    16. 16)
      • 22. Cao, Y., Ren, W., Egerstedt, M.: ‘Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks’, Automatica, 2012, 48, (8), pp. 15861597.
    17. 17)
      • 24. Zheng, Y., Wang, L.: ‘Containment control of heterogeneous multi-agent systems’, Int. J. Control, 2014, 87, (1), pp. 18.
    18. 18)
      • 35. Rockafellar, R.: ‘Convex analysis’ (Princeton University Press, Princeton, NJ, 1972).
    19. 19)
      • 25. Liu, K., Xie, G., Wang, L.: ‘Containment control for second-order multi-agent systems with time-varying delays’, Syst. Control Lett., 2014, 67, (7), pp. 2431.
    20. 20)
      • 20. Wang, Y., Liu, X., Xiao, J., et al: ‘Output formation-containment of coupled heterogeneous linear systems under intermittent communication’, J. Franklin Inst., 2016, 354, (1), pp. 392414.
    21. 21)
      • 17. Zhu, W., Cheng, D.: ‘Leader-following consensus of second-order agents with multiple time-varying delays’, Automatica, 2010, 46, (12), pp. 19941999.
    22. 22)
      • 30. Qiu, Z., Xie, L., Hong, Y.: ‘Quantized leaderless and leader-following consensus of high-order multi-agent systems with limited data rate’, IEEE Trans. Autom. Control, 2016, 61, (9), pp. 24322447.
    23. 23)
      • 33. Rong, L., Lu, J., Xu, S., et al: ‘Reference model-based containment control of multi-agent systems with higher-order dynamics’, IET Control Theory Appl., 2014, 8, (10), pp. 796802.
    24. 24)
      • 2. Dimarogonas, D.V., Kyriakopoulos, K.J.: ‘On the rendezvous problem for multiple nonholonomic agents’, IEEE Trans. Autom. Control, 2007, 52, (5), pp. 916922.
    25. 25)
      • 29. Hua, C., You, X., Guan, X.: ‘Leader-following consensus for a class of high-order nonlinear multi-agent systems’, Automatica, 2016, 73, pp. 138144.
    26. 26)
      • 28. Valcher, M.E., Misra, P.: ‘On the consensus and bipartite consensus in high-order multi-agent dynamical systems with antagonistic interactions’, Syst. Control Lett., 2014, 66, (66), pp. 94103.
    27. 27)
      • 11. Xia, H., Huang, T.Z., Shao, J., et al: ‘Group consensus of multi-agent systems with communication delays’, Neurocomputing, 2014, 171, pp. 16661673.
    28. 28)
      • 19. Shao, J., Qin, J., Bishop, A.N., et al: ‘A novel analysis on the efficiency of hierarchy among leader-following systems’, Automatica, 2016, 61, pp. 215222.
    29. 29)
      • 10. Davis, L., Jowett, S., Lafreniĺĺre, M.A.: ‘Optimal consensus control of linear multi-agent systems with communication time delay’, IET Control Theory Appl., 2013, 7, (15), pp. 18991905.
    30. 30)
      • 9. Liu, X., Wang, Y., Xiao, J., et al: ‘Distributed hierarchical control design of coupled heterogeneous linear systems under switching networks’, Int. J. Robust Nonlinear Control, 2016, 27, (8), pp. 12421259.
    31. 31)
      • 26. Ren, W., Moore, K., Chen, Y.: ‘High-order consensus algorithms in cooperative vehicle systems’. IEEE Int. Conf. on Networking, Sensing and Control, 2006, pp. 457462.
    32. 32)
      • 32. Wen, G., Zhao, Y., Duan, Z., et al: ‘Containment of higher-order multi-leader multi-agent systems: a dynamic output approach’, IEEE Trans. Autom. Control, 2015, 61, (4), pp. 11351140.
    33. 33)
      • 31. Dong, X., Li, Q., Ren, Z., et al: ‘Formation-containment control for high-order linear time-invariant multi-agent systems with time delays’, J. Franklin Inst., 2015, 352, (9), pp. 35643584.
    34. 34)
      • 8. Wang, Y., Yi, J.: ‘Consensus in second-order multi-agent systems via impulsive control using position-only information with heterogeneous delays’, IET Control Theory Appl., 2014, 9, (3), pp. 336345.
    35. 35)
      • 16. Ni, W., Cheng, D.: ‘Leader-following consensus of multi-agent systems under fixed and switching topologies’, Syst. Control Lett., 2010, 53, (9), pp. 209217.
    36. 36)
      • 12. Tang, Z., Huang, T., Shao, J., et al: ‘Leader-following consensus for multi-agent systems via sampled-data control’, IET Control Theory Appl., 2011, 5, (14), pp. 16581665.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1043
Loading

Related content

content/journals/10.1049/iet-cta.2017.1043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading