http://iet.metastore.ingenta.com
1887

Robust sampled-data control of non-linear LPV systems: time-dependent functional approach

Robust sampled-data control of non-linear LPV systems: time-dependent functional approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the problem of robust exponential stability and stabilisation of sampled-data linear parameter varying (LPV) systems with an aperiodic sampling rate. Utilising the input delay approach and taking the distance between real and measured parameters into account, new stability and stabilisation conditions are derived for LPV systems with arbitrary dependence on the parameters. By means of a modified parameter dependent Lyapunov–Krasovskii functional, stability conditions are formulated as a set of parameter-dependent linear matrix inequalities (PLMIs) which are suitable to investigate the effect of the sampling rate on the closed-loop stability. Furthermore, sufficient conditions to guarantee the feasibility of PLMIs over the set of whole parameters are derived that lead to the feasibility of a finite number of linear matrix inequalities. Applying the projection lemma new stability analysis conditions are obtained and shown to be suitable for the stabilisation problem. Under the new stability criteria, an efficient procedure developed for robust sampled-data controller design in the presence of uncertainty on the varying parameters and unknown time varying sampling rate. The proposed method is applied to a sampled-data fuzzy control problem of a non-linear system and multi-rate sampled-data LPV systems. Several examples show the efficiency of the method.

References

    1. 1)
      • 1. Hoffmann, C., Werner, H.: ‘A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations’, IEEE Trans. Control Syst. Technol., 2015, 23, (2), pp. 416433.
    2. 2)
      • 2. Chen, J., Zhang, W., Cao, Y.Y.: ‘Robust reliable feedback controller design against actuator faults for linear parameter-varying systems in finite-frequency domain’, IET Control Theory Applic., 2015, 9, (10), pp. 15951607.
    3. 3)
      • 3. Zhu, K., Zhao, J., Liu, Y.: ‘H filtering for switched linear parameter-varying systems and its application to aero-engines’, IET Control Theory Applic., 2016, 10, (18), pp. 25522558.
    4. 4)
      • 4. Liu, Y., Yang, J., Li, C.: ‘Robust finite-time stability and stabilisation for switched linear parameter-varying systems and its application to bank-to-turn missiles’, IET Control Theory Applic., 2015, 9, (14), pp. 21712179.
    5. 5)
      • 5. Briat, C.: ‘Linear parameter-varying and time-delay systems’, Analysis, observation, filtering & control, (Springer, Heidelberg, Germany, 2014), Vol. 3.
    6. 6)
      • 6. Tóth, R., Heuberger, P., Van den Hof, P.: ‘Discretisation of linear parameter-varying state-space representations’, IET Control Theory Applic., 2010, 4, (10), pp. 20822096.
    7. 7)
      • 7. Tóth, R., Lovera, M., Heuberger, P.S., et al: ‘On the discretization of linear fractional representations of LPV systems’, IEEE Trans. Control Syst. Technol., 2012, 20, (6), pp. 14731489.
    8. 8)
      • 8. Lam, J., Zhou, S.: ‘Gain scheduled H? controller design for discrete-time systems via parameter dependent Lyapunov functions’, International Journal of Information and Systems Science, 2008, 4, (2), pp. 191203.
    9. 9)
      • 9. De Caigny, J., Camino, J.F., Oliveira, R.C., et al: ‘Gain-scheduled dynamic output feedback control for discrete-time LPV systems’, Int. J. Robust Nonlinear Control, 2012, 22, (5), pp. 535558.
    10. 10)
      • 10. Tan, K., Grigoriadis, K.M.: ‘State-feedback control of LPV sampled-data systems’, Math. Probl. Eng., 2000, 6, (2-3), pp. 145170.
    11. 11)
      • 11. Tan, K., Grigoriadis, K.M., Wu, F.: ‘Output-feedback control of LPV sampled-data systems’, Int. J. Control, 2002, 75, (4), pp. 252264.
    12. 12)
      • 12. Heemels, W.M.H., Daafouz, J., Millerioux, G.: ‘Observer-based control of discrete-time LPV systems with uncertain parameters’, IEEE Trans. Autom. Control, 2010, 55, (9), pp. 21302135.
    13. 13)
      • 13. Sato, M.: ‘Discrete-time gain-scheduled output-feedback controllers exploiting inexact scheduling parameters via parameter-dependent Lyapunov functions’. 2011 50th IEEE Conf. on Decision and Control and European Control Conf. (CDC-ECC), Orlando, FL, USA, 2011, pp. 19381943.
    14. 14)
      • 14. Sato, M., Peaucelle, D.: ‘Gain-scheduled output-feedback controllers using inexact scheduling parameters for continuous-time LPV systems’, Automatica, 2013, 49, (4), pp. 10191025.
    15. 15)
      • 15. Daafouz, J., Bernussou, J., Geromel, J.C.: ‘On inexact LPV control design of continuous–time polytopic systems’, IEEE Trans. Autom. Control, 2008, 53, (7), pp. 16741678.
    16. 16)
      • 16. Ramezanifar, A., Mohammadpour, J., Grigoriadis, K.: ‘Sampled-data control of LPV systems using input delay approach’. 2012 IEEE 51st Annual Conf. on Decision and Control (CDC), Maui, HI, USA, 2012, pp. 63036308.
    17. 17)
      • 17. Ramezanifar, A., Mohammadpour, J., Grigoriadis, K.M.: ‘Sampled-data control of linear parameter varying time-delay systems using state feedback’. IEEE American Control Conf. (ACC 2013), Washington, DC, USA, 2013, pp. 68476852.
    18. 18)
      • 18. Ramezanifar, A., Mohammadpour, J., Grigoriadis, K.M.: ‘Output-feedback sampled-data control design for linear parameter-varying systems with delay’, Int. J. Control, 2014, 87, (12), pp. 24312445.
    19. 19)
      • 19. da Silva, J.G., Moraes, V., Flores, J., et al: ‘Sampled-data LPV control: a looped functional approach’, IFAC-PapersOnLine, 2015, 48, (26), pp. 1924.
    20. 20)
      • 20. Shi, T., Su, H.: ‘Sampled-data MPC for LPV systems with input saturation’, IET Control Theory Applic., 2014, 8, (17), pp. 17811788.
    21. 21)
      • 21. Lee, S., Kwon, O.: ‘Quantised MPC for LPV systems by using new Lyapunov–Krasovskii functional’, IET Control Theory Applic., 2016, 11, (3), pp. 439445.
    22. 22)
      • 22. Seuret, A.: ‘A novel stability analysis of linear systems under asynchronous samplings’, Automatica, 2012, 48, (1), pp. 177182.
    23. 23)
      • 23. Tuan, H.D., Apkarian, P., Nguyen, T.Q.: ‘Robust and reduced-order filtering: new LMI-based characterizations and methods’, IEEE Trans. Signal Process., 2001, 49, (12), pp. 29752984.
    24. 24)
      • 24. Fridman, E.: ‘A refined input delay approach to sampled-data control’, Automatica, 2010, 46, (2), pp. 421427.
    25. 25)
      • 25. Briat, C.: ‘Convergence and equivalence results for the Jensen's inequality application to time-delay and sampled-data systems’, IEEE Trans. Autom. Control, 2011, 56, (7), pp. 16601665.
    26. 26)
      • 26. Gao, H., Sun, W., Shi, P.: ‘Robust sampled-data H control for vehicle active suspension systems’, IEEE Trans. Control Syst. Technol., 2010, 18, (1), pp. 238245.
    27. 27)
      • 27. Xu, S., Sun, G., Sun, W.: ‘Fuzzy logic based fault-tolerant attitude control for nonlinear flexible spacecraft with sampled-data input’, J. Franklin Inst., 2017, 354, (5), pp. 21252156.
    28. 28)
      • 28. Xu, S., Sun, G., Sun, W.: ‘Reliable sampled-data vibration control for uncertain flexible spacecraft with frequency range limitation’, Nonlinear Dyn., 2016, 86, (2), pp. 11171135.
    29. 29)
      • 29. Zhang, C.K., Jiang, L., He, Y., et al: ‘Stability analysis for control systems with aperiodically sampled data using an augmented Lyapunov functional method’, IET Control Theory Applic., 2013, 7, (9), pp. 12191226.
    30. 30)
      • 30. Kočvara, M., Stingl, M.: ‘Penbmi user's guide (version 2.1)’. Software manual, PENOPT GbR, 2006.
    31. 31)
      • 31. Liu, K., Fridman, E.: ‘Wirtinger's inequality and Lyapunov-based sampled-data stabilization’, Automatica, 2012, 48, (1), pp. 102108.
    32. 32)
      • 32. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (John Wiley & Sons, New York, USA, 2004).
    33. 33)
      • 33. Gao, H., Chen, T.: ‘Stabilization of nonlinear systems under variable sampling: a fuzzy control approach’, IEEE Trans. Fuzzy Syst., 2007, 15, (5), pp. 972983.
    34. 34)
      • 34. Li, H., Jing, X., Lam, H.K., et al: ‘Fuzzy sampled-data control for uncertain vehicle suspension systems’, IEEE Trans. Cybern., 2014, 44, (7), pp. 11111126.
    35. 35)
      • 35. Koo, G.B., Park, J.B., Joo, Y.H.: ‘Guaranteed cost sampled-data fuzzy control for non-linear systems: a continuous-time Lyapunov approach’, IET Control Theory Applic., 2013, 7, (13), pp. 17451752.
    36. 36)
      • 36. Lam, H.: ‘Sampled-data fuzzy-model-based control systems: stability analysis with consideration of analogue-to-digital converter and digital-to-analogue converter’, IET Control Theory Applic., 2010, 4, (7), pp. 11311144.
    37. 37)
      • 37. Zhu, X.L., Chen, B., Yue, D., et al: ‘An improved input delay approach to stabilization of fuzzy systems under variable sampling’, IEEE Trans. Fuzzy Syst., 2012, 20, (2), pp. 330341.
    38. 38)
      • 38. Kao, C.Y., Rantzer, A.: ‘Stability analysis of systems with uncertain time-varying delays’, Automatica, 2007, 43, (6), pp. 959970.
    39. 39)
      • 39. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: ‘Exponential stability of impulsive systems with application to uncertain sampled-data systems’, Syst. Control Lett., 2008, 57, (5), pp. 378385.
    40. 40)
      • 40. Kawai, Y., Hirano, H., Azuma, T., et al: ‘Visual feedback control of an unmanned planar blimp system with self-scheduling parameter via receding horizon approach’. 2004 Proc. IEEE Int. Conf. on Control Applications, Taipei, Taiwan, Taiwan, 2004, vol. 2, pp. 16031608.
    41. 41)
      • 41. Zhang, H., Ostrowski, J.P.: ‘Visual servoing with dynamics: control of an unmanned blimp’. 1999 IEEE Proc. Int. Conf. on Robotics and Automation, Detroit, MI, USA, USA, 1999, vol. 1, pp. 618623.
    42. 42)
      • 42. Lofberg, J: ‘Yalmip: a toolbox for modeling and optimization in matlab’. 2004 IEEE Int. Symp. on Computer Aided Control Systems Design, New Orleans, LA, USA, 2004, pp. 284289.
    43. 43)
      • 43. Mosek, A.: ‘The mosek optimization toolbox for matlab manual’. Version 71 (Revision 28), 2015, p. 17.
    44. 44)
      • 44. Cerone, V., Andreo, D., Larsson, M., et al: ‘Stabilization of a riderless bicycle [applications of control]’, IEEE Control Syst., 2010, 30, (5), pp. 2332.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0980
Loading

Related content

content/journals/10.1049/iet-cta.2017.0980
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address