Zero-error convergence of iterative learning control based on uniform quantisation with encoding and decoding mechanism
In this study, the zero-error convergence of the iterative learning control for a tracking problem is realised by incorporating a uniform quantiser with an encoding and decoding mechanism. Under this scheme, the system output is first transformed and encoded. Then, the encoded information is transmitted back for updating the input. The results are extended to a finite quantisation level situation under the same framework and a simulation using a permanent magnet linear motor is performed to demonstrate the effectiveness of the proposed scheme.