http://iet.metastore.ingenta.com
1887

Design of distributed sampled-data fuzzy controller for a class of non-linear hyperbolic PDE systems: input delay approach

Design of distributed sampled-data fuzzy controller for a class of non-linear hyperbolic PDE systems: input delay approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the problem of distributed sampled-data fuzzy controller design for a class of non-linear distributed parameter systems which are described by first-order hyperbolic partial differential equations (PDEs). To achieve this goal, first, the non-linear system is modelled by a continuous-time Takagi–Sugeno first-order hyperbolic PDE fuzzy model. Subsequently, the authors design a new distributed sampled-data fuzzy controller that generates a zero-order hold sampled-data control signal appropriate for the PDE systems. Then, a new Lyapunov–Krasovskii functional is suggested to provide the stability analysis conditions of the closed-loop control system. Moreover, the stabilisation conditions are obtained and converted to linear matrix inequalities using some new null terms. The proposed technique has removed the structural constraints on the convection and Lyapunov matrices. Finally, the proposed approach is applied on a biological system and a non-isothermal plug flow reactor .

References

    1. 1)
      • 1. Wang, J.W., Wu, H.N., Li, H.X.: ‘Distributed fuzzy control design of nonlinear hyperbolic pde systems with application to nonisothermal plug-flow reactor’, IEEE Trans. Fuzzy Syst., 2011, 19, (3), pp. 514526.
    2. 2)
      • 2. Wang, J.W., Wu, H.N., Li, H.X.: ‘Distributed proportional–spatial derivative control of nonlinear parabolic systems via fuzzy pde modelling approach’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2012, 42, (3), pp. 927938.
    3. 3)
      • 3. Ray, W.H.: ‘Advanced process control’ (McGraw-Hill, New York, 1981).
    4. 4)
      • 4. Wu, H.N., Wang, J.W., Li, H.X.: ‘Exponential stabilization for a class of nonlinear parabolic pde systems via fuzzy control approach’, IEEE Trans. Fuzzy Syst., 2012, 20, (2), pp. 318329.
    5. 5)
      • 5. Wu, H.N., Li, H.X.: ‘A multiobjective optimization based fuzzy control for nonlinear spatially distributed processes with application to a catalytic rod’, IEEE Trans. Ind. Inf., 2012, 8, (4), pp. 860868.
    6. 6)
      • 6. Mozelli, L., Palhares, R.M., Mendes, E.: ‘Equivalent techniques, extra comparisons and less conservative control design for Takagi Sugeno (ts) fuzzy systems’, IET Control Theory Appl., 2010, 4, (12), pp. 28132822.
    7. 7)
      • 7. Tanaka, K., Tanaka, M., Chen, Y.J., et al: ‘A new sum-of-squares design framework for robust control of polynomial fuzzy systems with uncertainties’, IEEE Trans. Fuzzy Syst., 2016, 24, pp. 94110.
    8. 8)
      • 8. Zanil, M., Hussain, M.: ‘Multivariable adaptive Lyapunov fuzzy controller for ph neutralisation process’, 2015, 37, pp. 16431648.
    9. 9)
      • 9. Vafamand, N., Mardani, M.M., Khayatian, A., et al: ‘Non-iterative SOS-based approach for guaranteed cost control design of polynomial systems with input saturation’, IET Control Theory Appl., 2017, 11, (16), pp. 27242730.
    10. 10)
      • 10. Tabarisaadi, P., Mardani, M.M., Shasadeghi, M., et al: ‘A sum-of-squares approach to consensus of nonlinear leader-follower multi-agent systems based on novel polynomial and fuzzy polynomial models’, J. Franklin Inst., 2017, 354, (18), pp. 83988420.
    11. 11)
      • 11. Al.Gherwi Kumar, D., W., Budman, H.: ‘Robust-distributed mpc tolerant to communication loss’, Comput. Chem. Eng., 2016, 88, pp. 3038.
    12. 12)
      • 12. Xie, X.P., Liu, Z.W., Zhu, X.L.: ‘An efficient approach for reducing the conservatism of lmi-based stability conditions for continuous-time t–s fuzzy systems’, Fuzzy Sets Syst., 2015, 263, pp. 7181.
    13. 13)
      • 13. Xie, X., Yue, D., Ma, T., et al: ‘Further studies on control synthesis of discrete-time ts fuzzy systems via augmented multi-indexed matrix approach’, IEEE Trans. Cybern., 2014, 44, (12), pp. 27842791.
    14. 14)
      • 14. Xie, X., Yue, D., Zhu, X.: ‘Further studies on control synthesis of discrete-time t–s fuzzy systems via useful matrix equalities’, IEEE Trans. Fuzzy Syst., 2014, 22, (4), pp. 10261031.
    15. 15)
      • 15. Sadeghi, M.S., Vafamand, N., Babaei, M.S.: ‘Non-quadratic exponential stabilisation of non-linear hyperbolic partial differential equation systems’, IET Sci. Meas. Technol., 2014, 8, (6), pp. 537545.
    16. 16)
      • 16. Koo, G.B., Park, J.B., Joo, Y.H.: ‘Intelligent digital redesign of fuzzy controller for non-linear systems with packet losses’, IET Control Theory Appl., 2016, 10, (3), pp. 292299.
    17. 17)
      • 17. Lam, H.K.: ‘Sampled-data output-feedback fuzzy controller for nonlinear systems based on polynomial fuzzy model-based control approach’, in ‘Polynomial fuzzy model-based control systems’ (Springer, Berlin, Germany, 2016), pp. 197220.
    18. 18)
      • 18. Yoneyama, J.: ‘Robust sampled-data stabilization of uncertain fuzzy systems via input delay approach’, Inf. Sci., 2012, 198, pp. 169176.
    19. 19)
      • 19. Lam, H.K., Leung, F.H.F.: ‘Stability analysis of fuzzy-model-based control systems’, 264 (Springer, Berlin, Germany, 2011).
    20. 20)
      • 20. Wu, Y.Q., Su, H., Wu, Z.G.: ‘Synchronisation control of dynamical networks subject to variable sampling and actuators saturation’, IET Control Theory Appl., 2015, 9, (3), pp. 381391.
    21. 21)
      • 21. Wu, Z., Peng, L., Xie, L., et al: ‘Asymptotic bounded consensus tracking of double-integrator multi-agent systems with a bounded-jerk target via sampled-data control’, IET Control Theory Appl., 2015, 9, (12), pp. 19091915.
    22. 22)
      • 22. Peng, C., Zhang, J.: ‘Event-triggered output-feedback h control for networked control systems with time-varying sampling’, IET Control Theory Appl., 2015, 9, (9), pp. 13841391.
    23. 23)
      • 23. Demetriou, M.A., Kazantzis, N.: ‘A new integrated output feedback controller synthesis and collocated actuator/sensor scheduling framework for distributed parameter processes’, Comput. Chem. Eng., 2005, 29, (4), pp. 867876.
    24. 24)
      • 24. Wu, H.N., Li, H.X.: ‘H fuzzy observer-based control for a class of nonlinear distributed parameter systems with control constraints’, IEEE Trans. Fuzzy Syst., 2008, 16, (2), pp. 502516.
    25. 25)
      • 25. Yang, C.D., Qiu, J., Wang, J.W.: ‘Robust control for a class of nonlinear distributed parameter systems via proportional-spatial derivative control approach’, in ‘Abstract and applied analysis’, 2014, 2014, (2014), pp. 18.
    26. 26)
      • 26. Wang, J.W., Wu, H.N.: ‘Exponential pointwise stabilization of semi-linear parabolic distributed parameter systems via the Takagi-Sugeno fuzzy pde model’, IEEE Trans. Fuzzy Syst., 2016, doi. 10.1109/TFUZZ.2016.2646745.
    27. 27)
      • 27. Wang, J.W., Li, H.X., Wu, H.N.: ‘A membership-function-dependent approach to design fuzzy pointwise state feedback controller for nonlinear parabolic distributed parameter systems with spatially discrete actuators’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (7), pp. 14861499.
    28. 28)
      • 28. Wang, J.W., Li, H.X., Wu, H.N.: ‘Fuzzy guaranteed cost sampled-data control of nonlinear systems coupled with a scalar reaction–diffusion process’, Fuzzy Sets Syst., 2015, 302, pp. 121142.
    29. 29)
      • 29. Wang, Z.P., Wu, H.N.: ‘Finite dimensional guaranteed cost sampled-data fuzzy control for a class of nonlinear distributed parameter systems’, Inf. Sci., 2016, 327, pp. 2139.
    30. 30)
      • 30. Wu, H.N., Wang, J.W., Li, H.X.: ‘Design of distributed hinf fuzzy controllers with constraint for nonlinear hyperbolic pde systems’, Automatica, 2012, 48, pp. 25352543.
    31. 31)
      • 31. Qiu, J., Ding, S., Gao, H., et al: ‘Fuzzy-model-based reliable static output feedback h-infinity control of nonlinear hyperbolic pde systems’, IEEE Trans. Fuzzy Syst., 2015, 24, (2), pp. 388400.
    32. 32)
      • 32. Chen, M., Li, J., Zhang, W.: ‘Non-fragile guaranteed cost fuzzy control for nonlinear first-order hyperbolic partial differential equation systems’, Int. J. Comput. Math., 2015, 92, (1), pp. 77100.
    33. 33)
      • 33. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (John Wiley & Sons, New York, NY, USA, 2004).
    34. 34)
      • 34. Wang, J.W., Wu, H.N.: ‘Fuzzy output tracking control of semi-linear first-order hyperbolic pde systems with matched perturbations’, Fuzzy Sets Syst., 2014, 254, pp. 4766.
    35. 35)
      • 35. Pitarch, J., Rakhshan, M., Mardani, M.M., et al: ‘Distributed nonlinear control of a plug-flow reactor under saturation’, IFAC-PapersOnLine, 2016, 49, (24), pp. 8792.
    36. 36)
      • 36. Pitarch, J.L., Rakhshan, M., Mardani, M.M., et al: ‘Distributed saturated control for a class of semilinear pde systems: a SOS approach’, IEEE Trans. Fuzzy Syst., 2017, doi: 10.1109/TFUZZ.2017.2688379.
    37. 37)
      • 37. Lofberg, J.: ‘Yalmip: a toolbox for modeling and optimization in matlab’. 2004 IEEE Int. Symp. Computer Aided Control Systems Design, 2004, pp. 284289.
    38. 38)
      • 38. Aksikas, I., Winkin, J.J., Dochain, D.: ‘Optimal lq-feedback regulation of a nonisothermal plug flow reactor model by spectral factorization’, IEEE Trans. Autom. Control, 2007, 52, (7), pp. 11791193.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0915
Loading

Related content

content/journals/10.1049/iet-cta.2017.0915
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address