http://iet.metastore.ingenta.com
1887

Distributed coordination for a class of non-linear multi-agent systems with regulation constraints

Distributed coordination for a class of non-linear multi-agent systems with regulation constraints

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a multi-agent coordination problem with steady-state regulation constraints is investigated for a class of non-linear systems. Unlike the existing leader-following coordination formulations, a reference signal is not given by a dynamic autonomous leader but determined as the optimal solution of a distributed optimisation problem. Furthermore, the authors consider a global constraint having noisy data observations for the optimisation problem, which implies that the reference signal is not trivially available with the existing optimisation algorithms. To handle these challenges, the authors present a passivity-based analysis and design approach by using only local objective function, local data observation and exchanged information from their neighbours. The proposed distributed algorithms are shown to achieve the optimal steady-state regulation by rejecting the unknown observation disturbances for passive non-linear agents, which are persuasive in various practical problems. Applications and simulation examples are then given to verify the effectiveness of the proposed design.

References

    1. 1)
      • 1. Olfati Saber, R., Fax, A., Murray, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215233.
    2. 2)
      • 2. Ren, W., Cao, Y.: ‘Distributed coordination of multi-agent networks’ (Springer-Verlag, London, 2011).
    3. 3)
      • 3. Park, M.J., Kwon, O.M., Choi, S.G., et al.: ‘Consensus protocol design for discrete-time networks of multiagent with time-varying delay via logarithmic quantizer’, Complexity, 2015, 21, (1), pp. 163176.
    4. 4)
      • 4. Ni, W., Cheng, D.: ‘Leader-following consensus of multi-agent systems under fixed and switching topologies’, Syst. Control Lett., 2010, 59, (3), pp. 209217.
    5. 5)
      • 5. Wang, X., Hong, Y., Huang, J., et al.: ‘A distributed control approach to a robust output regulation problem for multi-agent linear systems’, IEEE Trans. Autom. Control, 2010, 55, (12), pp. 28912895.
    6. 6)
      • 6. Tang, Y.: ‘Leader-following coordination problem with an uncertain leader in a multi-agent system’, IET Control Theory Appl., 2014, 8, (10), pp. 773781.
    7. 7)
      • 7. Su, Y., Huang, J.: ‘Cooperative adaptive output regulation for a class of nonlinear uncertain multi-agent systems with unknown leader’, Syst. Control Lett., 2013, 62, (6), pp. 461467.
    8. 8)
      • 8. Tang, Y., Hong, Y., Wang, X.: ‘Distributed output regulation for a class of nonlinear multi-agent systems with unknown-input leaders’, Automatica, 2015, 62, pp. 154160.
    9. 9)
      • 9. Thunberg, J., Song, W., Montijano, E., et al.: ‘Distributed attitude synchronization control of multi-agent systems with switching topologies’, Automatica, 2014, 50, (3), pp. 832840.
    10. 10)
      • 10. Zhang, C., Ordóñez, R.: ‘Extremum-seeking control and applications: a numerical optimization-based approach’ (Springer Science & Business Media, 2011).
    11. 11)
      • 11. Qiu, Z., Liu, S., Xie, L.: ‘Distributed constrained optimal consensus of multi-agent systems’, Automatica, 2016, 68, pp. 209215.
    12. 12)
      • 12. Shi, G., Johansson, K.H., Hong, Y.: ‘Reaching an optimal consensus: dynamical systems that compute intersections of convex sets’, IEEE Trans. Autom. Control, 2013, 58, (3), pp. 610622.
    13. 13)
      • 13. Bose, S., Low, S.H., Teeraratkul, T., et al.: ‘Equivalent relaxations of optimal power flow’, IEEE Trans. Autom. Control, 2015, 60, (3), pp. 729742.
    14. 14)
      • 14. Nedić, A., Ozdaglar, A.: ‘Distributed subgradient methods for multi-agent optimization’, IEEE Trans. Autom. Control, 2009, 54, (1), pp. 4861.
    15. 15)
      • 15. Yuan, D., Xu, S., Lu, J.: ‘Gradient-free method for distributed multi-agent optimization via push-sum algorithms’, Int. J. Robust Nonlinear Control, 2015, 25, (10), pp. 15691580.
    16. 16)
      • 16. Lin, P., Ren, W., Song, Y.: ‘Distributed multi-agent optimization subject to nonidentical constraints and communication delays’, Automatica, 2016, 65, pp. 120131.
    17. 17)
      • 17. Tang, Y., Hong, Y., Yi, P.: ‘Distributed optimization design based on passivity technique’. Proc. Int. Conf. on Control and Automation (ICCA), IEEE, 2016, pp. 732737.
    18. 18)
      • 18. Zhang, Y., Hong, Y.: ‘Distributed optimization design for second-order multi-agent systems’. Proc. Chinese Control Conf. (CCC), IEEE, 2014, pp. 17551760.
    19. 19)
      • 19. Zhang, Y., Deng, Z., Hong, Y.: ‘Distributed optimal coordination for multiple heterogeneous Euler–Lagrangian systems’, Automatica, 2017, 79, pp. 207213.
    20. 20)
      • 20. Wang, X., Hong, Y., Ji, H.: ‘Distributed optimization for a class of nonlinear multiagent systems with disturbance rejection’, IEEE Trans. Cybern., 2016, 46, (7), pp. 16551666.
    21. 21)
      • 21. Cherukuri, A., Cortés, J.: ‘Distributed generator coordination for initialization and anytime optimization in economic dispatch’, IEEE Trans. Control Netw. Syst., 2015, 2, (3), pp. 226237.
    22. 22)
      • 22. Yi, P., Hong, Y., Liu, F.: ‘Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems’, Automatica, 2016, 74, pp. 259269.
    23. 23)
      • 23. Trip, S., Bürger, M., De Persis, C.: ‘An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages’, Automatica, 2016, 64, pp. 240253.
    24. 24)
      • 24. Jokic, A., Lazar, M., van den Bosch, P.P.: ‘On constrained steady-state regulation: dynamic KKT controllers’, IEEE Trans. Autom. Control, 2009, 54, (9), pp. 22502254.
    25. 25)
      • 25. Raafat, F.: ‘Survey of literature on continuously deteriorating inventory models’, J. Opt. Res. Soc.1991, pp. 2737.
    26. 26)
      • 26. Rezaee, H., Abdollahi, F.: ‘Average consensus over high-order multiagent systems’, IEEE Trans. Autom. Control, 2015, 60, (11), pp. 30473052.
    27. 27)
      • 27. Bürger, M., De Persis, C.: ‘Dynamic coupling design for nonlinear output agreement and time-varying flow control’, Automatica, 2015, 51, pp. 210222.
    28. 28)
      • 28. Bertsekas, D.P.: ‘Convex optimization theory’ (Athena Scientific, Belmont, 2009).
    29. 29)
      • 29. Mesbahi, M., Egerstedt, M.: ‘Graph theoretic methods in multiagent networks’ (Princeton University Press, 2010).
    30. 30)
      • 30. Khalil, H.K.: ‘Nonlinear systems’ (Prentice Hall, New Jersey, 2002, 3rd edn.).
    31. 31)
      • 31. Wen, J., Arcak, M.: ‘A unifying passivity framework for network flow control’, IEEE Trans. Autom. Control, 2004, 49, (2), pp. 162174.
    32. 32)
      • 32. Jayawardhana, B., Ortega, R., Castanos, F.: ‘Passivity of nonlinear incremental systems: application to PI stabilization of nonlinear RLC circuits’, Syst. Control Lett., 2007, 56, (9), pp. 618622.
    33. 33)
      • 33. Pavlov, A., Marconi, L.: ‘Incremental passivity and output regulation’, Syst. Control Lett., 2008, 57, (5), pp. 400409.
    34. 34)
      • 34. Stegink, T., Persis, C.D., Schaft, A.v.d.: ‘A unifying energy-based approach to stability of power grids with market dynamics’, IEEE Trans. Autom. Control, 2017, 62, (6), pp. 26122622.
    35. 35)
      • 35. Bauschke, H.H., Combettes, P.L.: ‘Convex analysis and monotone operator theory in Hilbert spaces’ (Springer, 2011).
    36. 36)
      • 36. Gadjov, D., Pavel, L.: ‘A passivity-based approach to Nash equilibrium seeking over networks’, 2017, arXiv preprint arXiv:170502424.
    37. 37)
      • 37. Bertsekas, D.P.: ‘Network optimization: continuous and discrete methods’ (Athena Scientific, 1998).
    38. 38)
      • 38. Huang, J.: ‘Nonlinear output regulation: theory and applications’ (SIAM, Philadelphia, 2004).
    39. 39)
      • 39. Chen, C.T.: ‘Linear system theory and design’ (Oxford University Press, New York, 1995).
    40. 40)
      • 40. Xiao, L., Boyd, S.: ‘Fast linear iterations for distributed averaging’, Syst. Control Lett., 2004, 53, (1), pp. 6578.
    41. 41)
      • 41. Kia, S.S., Cortés, J., Martínez, S.: ‘Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication’, Automatica, 2015, 55, pp. 254264.
    42. 42)
      • 42. Lu, J., Hill, D.J.: ‘Impulsive synchronization of chaotic Lur'e systems by linear static measurement feedback: an LMI approach’, IEEE Trans. Circuits Syst. II, Express Briefs, 2007, 54, (8), pp. 710714.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0893
Loading

Related content

content/journals/10.1049/iet-cta.2017.0893
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address