access icon free Algorithms for set stabilisation of Boolean control networks

This study addresses two algorithms for set stabilisation of Boolean control networks (BCNs). Based on the semi-tensor product tool, the dynamics of BCNs can be characterised by its labelled digraph, which derived an graphical expression for the set stabilisation of BCNs. Then, two tree-search algorithms, namely, generalised breadth-first search and generalised depth-first search, are proposed for the first time to decide the controllers for the set stabilisation of BCNs. In addition, some properties concerning the tree search algorithm are proposed. Finally, an example is employed to show the application of the presented algorithms.

Inspec keywords: stability; directed graphs; network theory (graphs); tensors; Boolean functions; tree searching; set theory

Other keywords: generalised depth-first search; semitensor product tool; tree search algorithm; set stabilisation; BCN; Boolean control networks; generalised breadth-first search; labelled digraph; tree-search algorithms

Subjects: Algebra; Stability in control theory; Combinatorial mathematics

References

    1. 1)
      • 28. Liu, Y., Chen, H., Lu, J., et al: ‘Controllability of probabilistic Boolean control networks based on transition probability matrices’, Automatica, 2015, 52, pp. 340345.
    2. 2)
      • 24. Lu, J., Zhong, J., Huang, C., et al: ‘On pinning controllability of Boolean control networks’, IEEE Trans. Autom. Control, 2016, 61, (6), pp. 16581663.
    3. 3)
      • 33. Zhang, L., Zhang, K.: ‘Controllability and observability of Boolean control networks with time-variant delays in states’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 24, (9), pp. 14781484.
    4. 4)
      • 23. Fornasini, E., Valcher, M.E.: ‘Observability, reconstructibility and state observers of Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (6), pp. 13901401.
    5. 5)
      • 6. Wang, L., Pichler, E., Ross, J.: ‘Oscillations and chaos in neural networks: an exactly solvable model’, Proc. Natl. Acad. Sci. USA, 1990, 87, (23), pp. 94679471.
    6. 6)
      • 12. Chen, H., Liang, J., Lu, J.: ‘Synchronization of state-dependent switched Boolean networks’. Proc. Control Conf., Kota Kinabalu, Malaysia, September 2015.
    7. 7)
      • 19. Laschov, D., Margaliot, M.: ‘Controllability of Boolean control networks via Perron-Frobenius theory’, Automatica, 2012, 48, (6), pp. 12181223.
    8. 8)
      • 18. Li, R., Chu, T.: ‘Complete Synchronization of Boolean networks’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (5), pp. 840846.
    9. 9)
      • 16. Li, H., Ding, X., Alsaedi, A., et al: ‘Stochastic set stabilization of n-person random evolutionary Boolean games and its applications’, IET Control Theory Appl., 2017, 11, (13), pp. 21522160.
    10. 10)
      • 31. Liu, Y., Lu, J., Wu, B.: ‘Some necessary and sufficient conditions for the output controllability of temporal Boolean control networks’, ESAIM: Control Optim. Calculus Variat., 2014, 20, (1), pp. 158173.
    11. 11)
      • 34. Fornasini, E., Valcher, M.E.: ‘Optimal control of Boolean control networks’, IEEE Trans. Autom. Control, 2014, 59, (5), pp. 12581270.
    12. 12)
      • 39. Guo, Y., Wang, P., Gui, W., et al: ‘Set stability and set stabilization of Boolean control networks based on invariant subsets’, Automatica, 2015, 61, pp. 106112.
    13. 13)
      • 10. Chen, H., Liang, J.: ‘Output regulation of Boolean control networks with stochastic disturbances’, IET Control Theory Appl., 2017, 11, (13), pp. 20972103.
    14. 14)
      • 14. Qi, H., Cheng, D., Hu, X.: ‘Stabilization of random Boolean networks’. Proc. 8th World Conf. Intelligent Control and Automation, Jinan, China, August 2010, pp. 19681973.
    15. 15)
      • 1. Huang, S., Ingber, D.: ‘Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cellregulatory networks’, Exp. Cell Res., 2000, 261, (1), pp. 91103.
    16. 16)
      • 43. Liang, J., Chen, H., Liu, Y.: ‘On algorithm for state feedback stabilization of Boolean control network’, Automatica, 2017, 84, pp. 1016.
    17. 17)
      • 30. Tian, H., Wang, Z., Hou, Y., et al: ‘State feedback controller design for synchronization of master-slave Boolean networks based on core input-state cycles’, Neurocomputing, 2016, 174, (Part B), pp. 10311037.
    18. 18)
      • 13. Li, F., Sun, J.: ‘Controllability of Boolean control networks with time delays in states’, Automatica, 2011, 47, (3), pp. 603607.
    19. 19)
      • 2. Stern, M.: ‘Emergence of homeostasis and ‘noise imprinting’ in an evolution model’, Proc. Natl. Acad. Sci. USA, 1999, 96, (19), pp. 1074610751.
    20. 20)
      • 38. Zhang, L., Boukas, E.K.: ‘Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities’, Automatica, 2009, 45, (2), pp. 463468.
    21. 21)
      • 44. Cheng, D., Qi, H.: ‘A linear representation of dynamics of Boolean networks’, IEEE Trans. Autom. Control, 2010, 55, (10), pp. 22512258.
    22. 22)
      • 27. Bof, N., Fornasini, E., Valcher, M.E.: ‘Output feedback stabilization of Boolean control networks’, Automatica, 2015, 57, pp. 2128.
    23. 23)
      • 29. Li, H., Wang, Y.: ‘Controllability analysis and control design for switched Boolean networks with state and input constraints’, SIAM J. Control Optim., 2015, 53, (5), pp. 29552979.
    24. 24)
      • 37. Yang, R., Wang, Y.: ‘Finite-time stability analysis and H control for a class of nonlinear time-delay Hamiltonian systems’, Automatica, 2013, 49, (2), pp. 390401.
    25. 25)
      • 45. Veliz-Cuba, A., Stigler, B.: ‘Boolean models can explain bistability in the lac operon’, J. Comput. Biol., 2011, 18, (6), pp. 783794.
    26. 26)
      • 46. Li, R., Yang, M., Chu, T.: ‘State feedback stabilization for Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (7), pp. 18531857.
    27. 27)
      • 15. Zhao, Y., Qi, H., Cheng, D.: ‘Input-state incidence matrix of Boolean control networks and its applications’, Syst. Control Lett., 2010, 59, (12), pp. 767774.
    28. 28)
      • 11. Chen, H., Liang, J., Wang, Z.: ‘Pinning controllability of autonomous Boolean control networks’, Sci. China Inf. Sci., 2016, 59, (7), p. 070107.
    29. 29)
      • 36. Tang, Y., Gao, H., Zhang, W., et al: ‘Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses’, Automatica, 2015, 53, pp. 346354.
    30. 30)
      • 25. Liu, Y., Cao, J., Sun, L., et al: ‘Sampled-data state feedback stabilization of Boolean control networks’, Neural Comput., 2016, 28, (4), pp. 778799.
    31. 31)
      • 4. Albert, R., Othmer, H.: ‘The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster’, J. Theor. Biol., 2003, 223, (1), pp. 118.
    32. 32)
      • 41. Li, F., Tang, Y.: ‘Set stabilization for switched Boolean control networks’, Automatica, 2017, 78, pp. 223230.
    33. 33)
      • 5. Chaves, M., Albert, R., Sontag, E.: ‘Robustness and fragility of Boolean models for genetic regulatory networks’, J. Theor. Biol., 2005, 235, (3), pp. 431449.
    34. 34)
      • 35. Lu, J., Li, H., Liu, Y., et al: ‘Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems’, IET Control Theory Applic., 2017, 11, (13), pp. 20402047.
    35. 35)
      • 26. Li, F.: ‘Pinning control design for the stabilization of Boolean networks’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (7), pp. 15851590.
    36. 36)
      • 40. Liu, R., Lu, J., Lou, J., et al: ‘Set stabilization of Boolean networks under pinning control strategy’, Neurocomputing, 2017, 260, pp. 142148.
    37. 37)
      • 20. Ding, Y., Guo, Y., Xie, Y., et al: ‘Time-optimal state feedback stabilization of switched Boolean control networks’, Neurocomputing, 2016, 237, pp. 265271.
    38. 38)
      • 3. Bornholdt, S., Sneppen, K.: ‘Robustness as an evolutionary principle’, Proc. R. Soc. Lond. B, 2000, 267, (1459), pp. 22812286.
    39. 39)
      • 22. Laschov, D., Margaliot, M.: ‘Minimum-time control of Boolean networks’. Proc. IEEE Annu. Conf. Decision and Control, Los Angeles, USA, February 2015, no. 4, pp.15451550.
    40. 40)
      • 32. Zou, Y., Zhu, J.: ‘System decomposition with respect to inputs for Boolean control networks’, Automatica, 2014, 50, (4), pp. 13041309.
    41. 41)
      • 42. Guo, Y., Ding, Y., Xie, D.: ‘Invariant subset and set stability of Boolean networks under arbitrary switching signals’, IEEE Trans. Autom. Control, 2017, 62, (8), pp. 42094214.
    42. 42)
      • 8. Cheng, D., Qi, H.: ‘Controllability and observability of Boolean control networks’, Automatica, 2009, 45, (7), pp. 16591667.
    43. 43)
      • 21. Li, H., Wang, Y.: ‘Output feedback stabilization control design for Boolean control networks’, Automatica, 2013, 49, (12), pp. 36413645.
    44. 44)
      • 17. Li, F.: ‘Global stability at a limit cycle of switched Boolean networks under arbitrary switching signals’, Neurocomputing, 2014, 133, (8), pp. 6366.
    45. 45)
      • 7. Cheng, D.: ‘Semi-tensor product of matrices and its applications – a survey’. Proc. Int. Conf. Chinese Mathematicians, Hangzhou, China, January 2007, vol. 3, pp. 641668.
    46. 46)
      • 9. Cheng, D., Qi, H., Li, Z., et al: ‘Stability and stabilization of Boolean networks’, Int. J. Robust Nonlinear Control, 2011, 21, (2), pp. 134156.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0878
Loading

Related content

content/journals/10.1049/iet-cta.2017.0878
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading