access icon free Delayed output feedback of discrete-time time-delay systems with applications to spacecraft rendezvous

This work studies the delayed output feedback (DOF) of discrete-time systems with input and output delays that are arbitrarily large, bounded, and exactly known. The significance of the DOF is that only the present and delayed inputs and outputs are used for feedback. For systems with a single input delay and multiple output delays, the idea of state prediction is utilised to construct the DOF controller. While for systems with multiple input and output delays, the DOF controller is designed by firstly reducing the original system to a delay-free one. It is shown in both cases that the closed-loop systems controlled by DOF are asymptotically stable and act like delay-free systems with the same dimensions as open-loop systems. Compared with the continuous-time case, the DOF controllers for discrete-time systems do not contain distributed delay terms and the implementation problems can be avoided. The DOF is used to stabilise the spacecraft rendezvous system with input and output delays and simulations show the effectiveness of the proposed approach.

Inspec keywords: delays; closed loop systems; space vehicles; control system synthesis; asymptotic stability; open loop systems; feedback; discrete time systems

Other keywords: asymptotic stability; open-loop systems; DOF controller; spacecraft rendezvous system; multiple output delays; delayed output feedback; discrete-time time-delay systems; closed-loop systems; single input delay

Subjects: Distributed parameter control systems; Aerospace control; Stability in control theory; Discrete control systems; Control system analysis and synthesis methods

References

    1. 1)
      • 16. Niu, Y., Jia, T., Huang, J., et al: ‘Design of sliding mode control for neutral delay systems with perturbation in control channels’, Optim. Control Appl. Methods, 2012, 33, (3), pp. 363374.
    2. 2)
      • 36. Artstein, Z.: ‘Linear systems with delayed controls: A reduction’, IEEE Trans. Autom. Control, 1982, 27, (4), pp. 869879.
    3. 3)
      • 7. Fridman, E.: ‘A refined input delay approach to sampled-data control’, Automatica, 2010, 46, (2), pp. 421427.
    4. 4)
      • 8. Gu, K., Chen, V.L., Kharitonov, J.: ‘Stability of time-delay systems’ (Birkhäuser, Boston, MA, 2003).
    5. 5)
      • 10. Zhang, J., Shi, P., Xia, Y.: ‘Fuzzy delay compensation control for T-S fuzzy systems over network’, IEEE Trans. Cybern., 2013, 43, (1), pp. 259268.
    6. 6)
      • 32. Yan, H., Tan, S., Xie, Y.: ‘Integrated translational and rotational control for rendezvous and docking on ellipse orbits’, 12th World Congress on Intelligent Control and Automation (WCICA), 2016, pp. 268273.
    7. 7)
      • 14. Yan, Y., Huang, J.: ‘Cooperative output regulation of discrete-time linear time-delay multi-agent systems’, IET Control Theory Appl., 2016, 10, (16), pp. 20192026.
    8. 8)
      • 34. Dong, H., Hu, Q., Akella, M.R.: ‘Safety control for spacecraft autonomous rendezvous and docking under motion constraints’, J. Guid. Control Dyn., 2017, 40, (7), pp. 16801692.
    9. 9)
      • 3. Feng, Z., Zheng, W.X.: ‘Improved stability condition for Takagi–Sugeno fuzzy systems with time-varying delay’, IEEE Trans. Cybern., 2017, 47, (3), pp. 661670.
    10. 10)
      • 25. Xu, C.C., Zhou, B.: ‘Implementation of delayed output feedback for linear systems with multiple input delays’, IET Control Theory Applic., 2017, 11, (12), pp. 20282035.
    11. 11)
      • 44. Song, G., Li, T., Li, Y., et al: ‘Quantized output feedback stabilization for nonlinear discrete-time systems subject to saturating actuator’, Nonlinear Dyn., 2016, 83, (1–2), pp. 305317.
    12. 12)
      • 12. Jiang, N., Xiong, J., Lam, J.: ‘Robust stabilisation of time-varying delay systems with probabilistic uncertainties’, Int. J. Syst. Sci., 2016, 47, (12), pp. 30163026.
    13. 13)
      • 41. Carter, T.E.: ‘State transition matrices for terminal rendezvous studies: brief survey and new example’, J. Guid. Control Dyn., 1998, 21, (1), pp. 148155.
    14. 14)
      • 22. Manitius, A., Olbrot, A.: ‘Finite spectrum assignment problem for systems with delays’, IEEE Trans. Autom. Control, 1979, 24, (4), pp. 541552.
    15. 15)
      • 31. Yan, H., Tan, S., He, Y.: ‘A small-gain method for integrated guidance and control in terminal phase of reentry’, Acta Astronaut., 2017, 132, pp. 282292.
    16. 16)
      • 19. Wang, D., Shi, P., Wang, W., et al: ‘Non-fragile H control for switched stochastic delay systems with application to water quality process’, Int. J. Robust Nonlinear Control, 2014, 24, (11), pp. 16771693.
    17. 17)
      • 37. Fagnani, F.: ‘Controllability and observability indices for linear time-invariant systems: A new approach’, Syst. Control Lett., 1991, 17, (4), pp. 243250.
    18. 18)
      • 20. Song, G., Wang, Z.: ‘A delay partitioning approach to output feedback control for uncertain discrete time-delay systems with actuator saturation’, Nonlinear Dyn., 2013, 74, (1-2), pp. 189202.
    19. 19)
      • 27. Xu, C.C., Yang, X.F.: ‘The instability phenomenon in the numerical implementation of delayed output feedback’. 29th Chinese Control and Decision Conf., Chongqing, China, 28–30 May 2017, pp. 42784283.
    20. 20)
      • 6. Jafarov, E.M.: ‘On stability delay bounds of simple input-delayed linear and non-linear systems: computational results’, Int. J. Autom. Comput., 2013, 10, (4), pp. 327334.
    21. 21)
      • 29. Song, C., Feng, G., Wang, Y., et al: ‘Rendezvous of mobile agents with constrained energy and intermittent communication’, IET Control Theory Applic., 2012, 6, (10), pp. 15571563.
    22. 22)
      • 21. Smith, O.J.: ‘A controller to overcome dead time’, ISA J., 1959, 6, (2), pp. 2833.
    23. 23)
      • 30. Liu, H., He, Y., Yan, H., et al: ‘Tether tension control law design during orbital transfer via small-gain theorem’, Aerosp. Sci. Technol., 2017, 63, pp. 191202.
    24. 24)
      • 1. Gu, K., Naghnaeian, M.: ‘Stability crossing set for systems with three delays’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 1126.
    25. 25)
      • 2. Kojima, A.: ‘H controller design for preview and delayed systems’, IEEE Trans. Autom. Control, 2015, 60, (2), pp. 404419.
    26. 26)
      • 17. Du, B., Lam, J., Shu, Z., et al: ‘A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components’, IET Control Theory Applic., 2009, 3, (4), pp. 383390.
    27. 27)
      • 38. Ge, S.S., Sun, Z., Lee, T.H.: ‘Reachability and controllability of switched linear discrete-time systems’, IEEE Trans. Autom. Control, 2001, 46, (9), pp. 14371441.
    28. 28)
      • 39. Malabre, M., Kučera, V., Zagalak, P.: ‘Reachability and controllability indices for linear descriptor systems’, Syst. Control Lett., 1990, 15, (2), pp. 119123.
    29. 29)
      • 42. Clohessy, W.H., Wiltshire, R.S.: ‘Terminal guidance system for satellite rendezvous’, J. Aerosp. Sci., 1960, 27, (9), pp. 653658.
    30. 30)
      • 11. Phat, V.N.: ‘Improved delay-dependent exponential stability of singular systems with mixed interval time-varying delays’, IET Control Theory Appl., 2015, 9, (9), pp. 13641372.
    31. 31)
      • 24. Medvedev, A.V., Toivonen, H.T.: ‘Continuous-time dead-beat observation problem with application to predictive control of systems with delay’, Kybernetika, 1994, 30, (6), pp. 669688.
    32. 32)
      • 5. Kwon, W., Pearson, A.: ‘Feedback stabilization of linear systems with delayed control’, IEEE Trans. Autom. Control, 1980, 25, (2), pp. 266269.
    33. 33)
      • 26. Mondié, S., Michiels, W.: ‘Finite spectrum assignment of unstable time-delay systems with a safe implementation’, IEEE Trans. Autom. Control, 2003, 48, (12), pp. 22072212.
    34. 34)
      • 28. Xu, C.C., Luo, W.W., Zhou, B.: ‘Delayed output feedback control of the spacecraft rendezvous system with actuator delays’. Proc. 36th Chinese Control Conf., Dalian, China, 26–28 July 2017, pp. 60376042.
    35. 35)
      • 23. Medvedev, A.V., Toivonen, H.T.: ‘Feedforward time-delay structures in state estimation: finite memory smoothing and continuous deadbeat observers’, IEE Proc., Control Theory Appl., 1994, 141, (2), pp. 121129.
    36. 36)
      • 9. Xia, Y., Liu, G.P., Shi, P., et al: ‘Robust delay-dependent sliding mode control for uncertain time-delay systems’, Int. J. Robust Nonlinear Control, 2008, 18, (11), pp. 11421161.
    37. 37)
      • 35. Zhou, B.: ‘Observer-based output feedback control of discrete-time linear systems with input and output delays’, Int. J. Control, 2014, 87, (11), pp. 22522272.
    38. 38)
      • 13. Hale, J.K., Lunel, S.M.V.: ‘Introduction to functional differential equations’ (Springer-Verlag, New York, 2013), pp. 1725.
    39. 39)
      • 40. Zhou, B., Cui, N.G., Duan, G.R.: ‘Circular orbital rendezvous with actuator saturation and delay: a parametric Lyapunov equation approach’, IET Control Theory Applic., 2012, 6, (9), pp. 12811287.
    40. 40)
      • 18. Sun, J., Han, Q.L, Chen, J., et al: ‘Less conservative stability criteria for linear systems with interval time-varying delays’, Int. J. Robust Nonlinear Control, 2015, 25, (4), pp. 475485.
    41. 41)
      • 15. Liang, J., Wang, Z., Liu, X.: ‘H control for 2-D time-delay systems with randomly occurring nonlinearities under sensor saturation and missing measurements’, J. Franklin Inst., 2015, 352, (3), pp. 10071030.
    42. 42)
      • 43. Zhou, B.: ‘Truncated predictor feedback for time-delay systems’ (Springer-Verlag, Berlin, 2014), pp. 379401.
    43. 43)
      • 4. Cong, S., Zou, Y.: ‘A new delay-dependent exponential stability criterion for Ito stochastic systems with Markovian switching and time-varying delay’, Int. J. Syst. Sci., 2010, 41, (12), pp. 14931500.
    44. 44)
      • 33. Tian, X., Jia, Y.: ‘Analytical solutions to the matrix inequalities in the robust control scheme based on implicit Lyapunov function for spacecraft rendezvous on elliptical orbit’, IET Control Theory Applic., 2017, 11, (12), pp. 19831991.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0853
Loading

Related content

content/journals/10.1049/iet-cta.2017.0853
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading