http://iet.metastore.ingenta.com
1887

Delayed output feedback of discrete-time time-delay systems with applications to spacecraft rendezvous

Delayed output feedback of discrete-time time-delay systems with applications to spacecraft rendezvous

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work studies the delayed output feedback (DOF) of discrete-time systems with input and output delays that are arbitrarily large, bounded, and exactly known. The significance of the DOF is that only the present and delayed inputs and outputs are used for feedback. For systems with a single input delay and multiple output delays, the idea of state prediction is utilised to construct the DOF controller. While for systems with multiple input and output delays, the DOF controller is designed by firstly reducing the original system to a delay-free one. It is shown in both cases that the closed-loop systems controlled by DOF are asymptotically stable and act like delay-free systems with the same dimensions as open-loop systems. Compared with the continuous-time case, the DOF controllers for discrete-time systems do not contain distributed delay terms and the implementation problems can be avoided. The DOF is used to stabilise the spacecraft rendezvous system with input and output delays and simulations show the effectiveness of the proposed approach.

References

    1. 1)
      • 1. Gu, K., Naghnaeian, M.: ‘Stability crossing set for systems with three delays’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 1126.
    2. 2)
      • 2. Kojima, A.: ‘H controller design for preview and delayed systems’, IEEE Trans. Autom. Control, 2015, 60, (2), pp. 404419.
    3. 3)
      • 3. Feng, Z., Zheng, W.X.: ‘Improved stability condition for Takagi–Sugeno fuzzy systems with time-varying delay’, IEEE Trans. Cybern., 2017, 47, (3), pp. 661670.
    4. 4)
      • 4. Cong, S., Zou, Y.: ‘A new delay-dependent exponential stability criterion for Ito stochastic systems with Markovian switching and time-varying delay’, Int. J. Syst. Sci., 2010, 41, (12), pp. 14931500.
    5. 5)
      • 5. Kwon, W., Pearson, A.: ‘Feedback stabilization of linear systems with delayed control’, IEEE Trans. Autom. Control, 1980, 25, (2), pp. 266269.
    6. 6)
      • 6. Jafarov, E.M.: ‘On stability delay bounds of simple input-delayed linear and non-linear systems: computational results’, Int. J. Autom. Comput., 2013, 10, (4), pp. 327334.
    7. 7)
      • 7. Fridman, E.: ‘A refined input delay approach to sampled-data control’, Automatica, 2010, 46, (2), pp. 421427.
    8. 8)
      • 8. Gu, K., Chen, V.L., Kharitonov, J.: ‘Stability of time-delay systems’ (Birkhäuser, Boston, MA, 2003).
    9. 9)
      • 9. Xia, Y., Liu, G.P., Shi, P., et al: ‘Robust delay-dependent sliding mode control for uncertain time-delay systems’, Int. J. Robust Nonlinear Control, 2008, 18, (11), pp. 11421161.
    10. 10)
      • 10. Zhang, J., Shi, P., Xia, Y.: ‘Fuzzy delay compensation control for T-S fuzzy systems over network’, IEEE Trans. Cybern., 2013, 43, (1), pp. 259268.
    11. 11)
      • 11. Phat, V.N.: ‘Improved delay-dependent exponential stability of singular systems with mixed interval time-varying delays’, IET Control Theory Appl., 2015, 9, (9), pp. 13641372.
    12. 12)
      • 12. Jiang, N., Xiong, J., Lam, J.: ‘Robust stabilisation of time-varying delay systems with probabilistic uncertainties’, Int. J. Syst. Sci., 2016, 47, (12), pp. 30163026.
    13. 13)
      • 13. Hale, J.K., Lunel, S.M.V.: ‘Introduction to functional differential equations’ (Springer-Verlag, New York, 2013), pp. 1725.
    14. 14)
      • 14. Yan, Y., Huang, J.: ‘Cooperative output regulation of discrete-time linear time-delay multi-agent systems’, IET Control Theory Appl., 2016, 10, (16), pp. 20192026.
    15. 15)
      • 15. Liang, J., Wang, Z., Liu, X.: ‘H control for 2-D time-delay systems with randomly occurring nonlinearities under sensor saturation and missing measurements’, J. Franklin Inst., 2015, 352, (3), pp. 10071030.
    16. 16)
      • 16. Niu, Y., Jia, T., Huang, J., et al: ‘Design of sliding mode control for neutral delay systems with perturbation in control channels’, Optim. Control Appl. Methods, 2012, 33, (3), pp. 363374.
    17. 17)
      • 17. Du, B., Lam, J., Shu, Z., et al: ‘A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components’, IET Control Theory Applic., 2009, 3, (4), pp. 383390.
    18. 18)
      • 18. Sun, J., Han, Q.L, Chen, J., et al: ‘Less conservative stability criteria for linear systems with interval time-varying delays’, Int. J. Robust Nonlinear Control, 2015, 25, (4), pp. 475485.
    19. 19)
      • 19. Wang, D., Shi, P., Wang, W., et al: ‘Non-fragile H control for switched stochastic delay systems with application to water quality process’, Int. J. Robust Nonlinear Control, 2014, 24, (11), pp. 16771693.
    20. 20)
      • 20. Song, G., Wang, Z.: ‘A delay partitioning approach to output feedback control for uncertain discrete time-delay systems with actuator saturation’, Nonlinear Dyn., 2013, 74, (1-2), pp. 189202.
    21. 21)
      • 21. Smith, O.J.: ‘A controller to overcome dead time’, ISA J., 1959, 6, (2), pp. 2833.
    22. 22)
      • 22. Manitius, A., Olbrot, A.: ‘Finite spectrum assignment problem for systems with delays’, IEEE Trans. Autom. Control, 1979, 24, (4), pp. 541552.
    23. 23)
      • 23. Medvedev, A.V., Toivonen, H.T.: ‘Feedforward time-delay structures in state estimation: finite memory smoothing and continuous deadbeat observers’, IEE Proc., Control Theory Appl., 1994, 141, (2), pp. 121129.
    24. 24)
      • 24. Medvedev, A.V., Toivonen, H.T.: ‘Continuous-time dead-beat observation problem with application to predictive control of systems with delay’, Kybernetika, 1994, 30, (6), pp. 669688.
    25. 25)
      • 25. Xu, C.C., Zhou, B.: ‘Implementation of delayed output feedback for linear systems with multiple input delays’, IET Control Theory Applic., 2017, 11, (12), pp. 20282035.
    26. 26)
      • 26. Mondié, S., Michiels, W.: ‘Finite spectrum assignment of unstable time-delay systems with a safe implementation’, IEEE Trans. Autom. Control, 2003, 48, (12), pp. 22072212.
    27. 27)
      • 27. Xu, C.C., Yang, X.F.: ‘The instability phenomenon in the numerical implementation of delayed output feedback’. 29th Chinese Control and Decision Conf., Chongqing, China, 28–30 May 2017, pp. 42784283.
    28. 28)
      • 28. Xu, C.C., Luo, W.W., Zhou, B.: ‘Delayed output feedback control of the spacecraft rendezvous system with actuator delays’. Proc. 36th Chinese Control Conf., Dalian, China, 26–28 July 2017, pp. 60376042.
    29. 29)
      • 29. Song, C., Feng, G., Wang, Y., et al: ‘Rendezvous of mobile agents with constrained energy and intermittent communication’, IET Control Theory Applic., 2012, 6, (10), pp. 15571563.
    30. 30)
      • 30. Liu, H., He, Y., Yan, H., et al: ‘Tether tension control law design during orbital transfer via small-gain theorem’, Aerosp. Sci. Technol., 2017, 63, pp. 191202.
    31. 31)
      • 31. Yan, H., Tan, S., He, Y.: ‘A small-gain method for integrated guidance and control in terminal phase of reentry’, Acta Astronaut., 2017, 132, pp. 282292.
    32. 32)
      • 32. Yan, H., Tan, S., Xie, Y.: ‘Integrated translational and rotational control for rendezvous and docking on ellipse orbits’, 12th World Congress on Intelligent Control and Automation (WCICA), 2016, pp. 268273.
    33. 33)
      • 33. Tian, X., Jia, Y.: ‘Analytical solutions to the matrix inequalities in the robust control scheme based on implicit Lyapunov function for spacecraft rendezvous on elliptical orbit’, IET Control Theory Applic., 2017, 11, (12), pp. 19831991.
    34. 34)
      • 34. Dong, H., Hu, Q., Akella, M.R.: ‘Safety control for spacecraft autonomous rendezvous and docking under motion constraints’, J. Guid. Control Dyn., 2017, 40, (7), pp. 16801692.
    35. 35)
      • 35. Zhou, B.: ‘Observer-based output feedback control of discrete-time linear systems with input and output delays’, Int. J. Control, 2014, 87, (11), pp. 22522272.
    36. 36)
      • 36. Artstein, Z.: ‘Linear systems with delayed controls: A reduction’, IEEE Trans. Autom. Control, 1982, 27, (4), pp. 869879.
    37. 37)
      • 37. Fagnani, F.: ‘Controllability and observability indices for linear time-invariant systems: A new approach’, Syst. Control Lett., 1991, 17, (4), pp. 243250.
    38. 38)
      • 38. Ge, S.S., Sun, Z., Lee, T.H.: ‘Reachability and controllability of switched linear discrete-time systems’, IEEE Trans. Autom. Control, 2001, 46, (9), pp. 14371441.
    39. 39)
      • 39. Malabre, M., Kučera, V., Zagalak, P.: ‘Reachability and controllability indices for linear descriptor systems’, Syst. Control Lett., 1990, 15, (2), pp. 119123.
    40. 40)
      • 40. Zhou, B., Cui, N.G., Duan, G.R.: ‘Circular orbital rendezvous with actuator saturation and delay: a parametric Lyapunov equation approach’, IET Control Theory Applic., 2012, 6, (9), pp. 12811287.
    41. 41)
      • 41. Carter, T.E.: ‘State transition matrices for terminal rendezvous studies: brief survey and new example’, J. Guid. Control Dyn., 1998, 21, (1), pp. 148155.
    42. 42)
      • 42. Clohessy, W.H., Wiltshire, R.S.: ‘Terminal guidance system for satellite rendezvous’, J. Aerosp. Sci., 1960, 27, (9), pp. 653658.
    43. 43)
      • 43. Zhou, B.: ‘Truncated predictor feedback for time-delay systems’ (Springer-Verlag, Berlin, 2014), pp. 379401.
    44. 44)
      • 44. Song, G., Li, T., Li, Y., et al: ‘Quantized output feedback stabilization for nonlinear discrete-time systems subject to saturating actuator’, Nonlinear Dyn., 2016, 83, (1–2), pp. 305317.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0853
Loading

Related content

content/journals/10.1049/iet-cta.2017.0853
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address