© The Institution of Engineering and Technology
This study addresses the control synthesis of positive switched systems in both continuous and discretetime contexts. First, a novel design approach to the statefeedback controller of continuoustime positive switched systems without time delay is presented by virtue of multiple linear copositive Lyapunov functions associated with linear programming. Then, the design approach is extended to discretetime positive switched systems. It is shown that the presented approach is less conservative than existing ones through comparisons. Furthermore, the approach is developed to the stabilisation of positive switched systems with time delay. Some discussions on the presented approach are provided to show potential applications in corresponding control issues of positive switched systems. Finally, two examples are given to illustrate the theoretical findings.
References


1)

1. Luenberger, E.: ‘Introduction to dynamic systems: theory, models, and applications’ (Wiley, New York, 1979).

2)

2. Farina, L., Rinaldi, S.: ‘Positive linear systems: theory and applications’ (Wiley, New York, 2000).

3)

3. Kaczorek, T.: ‘Positive 1D and 2D systems’ (SpringerVerlag, London, 2002).

4)

4. Shorten, R., Wirth, F., Leith, D.: ‘A positive systems model of TCPlike congestion control: asymptotic results’, IEEE/ACM Trans. Netw., 2006, 14, (3), pp. 616–629.

5)

5. Jadbabaie, A., Lin, J., Morse, A.S.: ‘Coordination of groups of mobile autonomous agents using nearest neighbor rules’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 988–1001.

6)

6. HernandezVargas, E., Middleton, R., Colaneri, P., et al: ‘Discretetime control for switched positive systems with application to mitigating viral escape’, Int. J. Robust Nonlinear Control, 2011, 21, (10), pp. 1093–1111.

7)

7. Zorzan, I.: ‘An introduction to positive switched systems and their application to HIV treatment modeling’ (Universitá degli Studi di Padova, 2014).

8)

8. Arneson, H.: ‘Control design techniques for constrained positive compartmental systems with applications to air traffic flow management’ (University of Illinois, UrbanaChampaign, 2012).

9)

9. Liu, X., Lam, J.: ‘Stability analysis of discretetime positive switched linear delay systems’. 2012 American Control Conf., Montreal, Canada, 27–29 June 2012, pp. 5444–5449.

10)

10. Mason, O., Shorten, R.: ‘On linear copositive Lyapunov functions and the stability of switched positive linear systems’, IEEE Trans. Autom. Control, 2007, 52, (7), pp. 1346–1349.

11)

11. Knorn, F., Mason, O., Shorten, R.: ‘On linear copositive Lyapunov functions for sets of linear positive systems’, Automatica, 2009, 45, (8), pp. 1943–1947.

12)

12. Fornasini, E., Valcher, M.E.: ‘Linear copositive Lyapunov functions for continuoustime positive switched systems’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 1933–1937.

13)

13. Zhao, X., Zhang, L., Shi, P., et al: ‘Stability of switched positive linear systems with average dwell time switching’, Automatica, 2012, 48, (6), pp. 1132–1137.

14)

14. Zhao, X., Zhang, L., Shi, P.: ‘Stability of a class of switched positive linear timedelay systems’, Int. J. Robust Nonlinear Control, 2013, 23, (5), pp. 578–589.

15)

15. Gurvits, L., Shorten, R., Mason, O.: ‘On the stability of switched positive linear systems’, IEEE Trans. Autom. Control, 2007, 52, (6), pp. 1099–1103.

16)

16. Liu, X., Dang, C.: ‘Stability analysis of positive switched linear systems with delays’, IEEE Trans. Autom. Control, 2011, 56, (7), pp. 1684–1690.

17)

17. Blanchini, F., Colaneri, P., Valcher, M.E.: ‘Copositive Lyapunov functions for the stabilization of positive switched systems’, IEEE Trans. Autom. Control, 2012, 57, (12), pp. 3038–3050.

18)

18. Lian, J., Liu, J.: ‘New results on stability of switched positive systems: an average dwelltime approach’, IET Control Theory Appl., 2013, 7, (12), pp. 1651–1658.

19)

19. Ait Rami, M., Tadeo, F.: ‘Controller synthesis for positive linear systems with bounded controls’, IEEE Trans. Circuits Syst. II Expr. Briefs, 2007, 54, (2), pp. 151–155.

20)

20. Ait Rami, M., Tadeo, F., Benzaouia, A.: ‘Control of constrained positive discrete systems’. Proc. 2007 American Control Conf., Marriott Marquis, New York, USA, 2007, pp. 5851–5856.

21)

21. Ait Rami, M.: ‘Solvability of static outputfeedback stabilization for LTI positive systems’, Syst. Control Lett., 2011, 60, pp. 704–708.

22)

22. Zhang, J., Zhao, X., Zhang, R.: ‘An improved approach to controller design of positive systems using controller gain decomposition’, J. Franklin Inst., 2017, 354, pp. 1356–1373.

23)

23. Chen, X., Lam, J., Li, P., et al: ‘ℓ1induced norm and controller synthesis of positive systems’, Automatica, 2013, 49, (5), pp. 1377–1385.

24)

24. Briat, C.: ‘Robust stability and stabilization of uncertain linear positive systems via integral linear constraints: L1gain and L∞gain characterization’, Int. J. Robust Nonlinear Control, 2013, 23, (17), pp. 1932–1954.

25)

25. Zhang, J., Han, Z., Zhu, F., et al: ‘Feedback control for switched positive linear systems’, IET Control Theory Appl., 2013, 7, (3), pp. 464–469.

26)

26. Yu, Z., Zhang, Z., Cheng, S., et al: ‘Approach to stabilisation of continuoustime switched positive systems’, IET Control Theory Appl., 2014, 8, (13), pp. 1207–1214.

27)

27. Xiang, M., Xiang, Z.: ‘Stability, L1gain and control synthesis for positive switched systems with timevarying delay’, Nonlinear Anal. Hybrid Syst., 2013, 9, pp. 9–17.

28)

28. Qi, W., Gao, X.: ‘State feedback controller design for singular positive Markovian jump systems with partly known transition rates’, Appl. Math. Lett., 2015, 46, pp. 111–116.

29)

29. Liu, J., Lian, J., Zhuang, Y.: ‘Output feedback L1 finitetime control of switched positive delayed systems with MDADT’, Nonlinear Anal. Hybrid Syst., 2015, 15, pp. 11–22.

30)

30. Liu, T., Wu, B., Liu, L., et al: ‘Asynchronously finitetime control of discrete impulsive switched positive timedelay systems’, J. Franklin Inst., 2015, 352, (10), pp. 4503–4514.

31)

31. Zhang, J., Han, Z., Zhu, F., et al: ‘Stability and stabilization of positive switched systems with modedependent average dwell time’, Nonlinear Anal. Hybrid Syst., 2013, 9, pp. 42–55.

32)

32. Xiang, M., Xiang, Z., Karimi, H.R.: ‘Asynchronous L1 control of delayed switched positive systems with modedependent average dwell time’, Inf. Sci., 2014, 278, pp. 703–714.

33)

33. Hespanha, J.P.: ‘Stability of switched systems with average dwelltime’. Proc. 38th IEEE Conf. Decision Control, 1999, vol. 3, pp. 2655–2660.

34)

34. Zhao, X., Zhang, L., Shi, P., et al: ‘Stability and stabilization of switched linear systems with modedependent average dwell time’, IEEE Trans. Autom. Control, 2012, 57, (7), pp. 1809–1815.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2017.0811
Related content
content/journals/10.1049/ietcta.2017.0811
pub_keyword,iet_inspecKeyword,pub_concept
6
6