access icon free Incremental stability for switched non-linear systems based on geometrically incremental dissipativity

In this study, a geometrically incremental dissipativity is proposed for switched discrete-time non-linear systems using multiple storage functions and multiple supply rates. The uniform incremental stability conditions are derived for geometrically incrementally dissipative discrete-time switched systems by using multiple Lyapunov functions approach and average dwell-time technique. The geometrically incremental dissipativity is preserved for the feedback interconnected switched non-linear systems with a composite switching law, while uniform incremental stability is preserved under some certain conditions. Two numerical examples are given to illustrate the validity of the authors' results.

Inspec keywords: Lyapunov methods; discrete time systems; nonlinear control systems; feedback; switching systems (control)

Other keywords: incremental stability; geometrically incremental dissipativity; multiple Lyapunov functions approach; average dwell-time technique; the feedback interconnected switched nonlinear systems; switched discrete-time nonlinear systems

Subjects: Nonlinear control systems; Stability in control theory; Time-varying control systems; Discrete control systems

References

    1. 1)
      • 23. Wang, D., Wang, W., Shi, P.: ‘Exponential H filtering for switched linear systems with interval time-varying delay’, Int. J. Robust Nonlinear Control, 2009, 19, (5), pp. 532551.
    2. 2)
      • 20. Sun, X., Wang, W., Liu, G., et al: ‘Stability analysis for linear switched systems with time-varying delay’, IEEE Trans. Syst. Man Cybern. B, 2008, 38, (2), pp. 528533.
    3. 3)
      • 11. Liu, T., Hill, D.J., Zhao, J.: ‘Output Synchronization of Dynamical Networks with Incrementally-Dissipative Nodes and Switching Topology’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (9), pp. 23122323.
    4. 4)
      • 33. Santoso, H., Hioe, D., Bao, J., et al: ‘Operability analysis of nonlinear processes based on incremental dissipativity’, J. Proc. Control, 2012, 22, (1), pp. 156166.
    5. 5)
      • 10. Wu, L., Ho, D.C., Li, C.W.: ‘Sliding mode control of switched hybrid systems with stochastic perturbation’, Syst. Control Lett., 2011, 60, (8), pp. 531539.
    6. 6)
      • 24. Willems, J.C.: ‘Dissipative dynamical systems part I: general theory’, Arch. Ration. Mech. Anal., 1972, 45, (5), pp. 321351.
    7. 7)
      • 4. Li, C.S., Zhao, J.: ‘Output synchronization of discrete-time dynamical networks based on geometrically incremental dissipativity’, ISA Trans., 2017, 66, pp. 209215.
    8. 8)
      • 30. Liu, B., Hill, D.J.: ‘Decomposable dissipativity and related stability for discrete-time switched systems’, IEEE Trans. Autom. Control, 2011, 56, (7), pp. 16661671.
    9. 9)
      • 35. Branicky, M.S.: ‘Multiple Lyapunov functions and other analysis tools for switched and hybrid systems’, IEEE Trans. Autom. Control, 1998, 43, (4), pp. 475482.
    10. 10)
      • 19. Yang, H., Jiang, B., Cocquempot, V., et al: ‘Stabilization of switched nonlinear systems with all unstable modes: Applicationtomulti-agentsystems’, IEEE Trans. Autom. Control, 2011, 56, (9), pp. 22302235.
    11. 11)
      • 16. Ma, R., Zhao, J.: ‘Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings’, Automatica, 2010, 46, (11), pp. 18191823.
    12. 12)
      • 5. Richter, J.H., Heemels, W.P.M.H., van de Wouw, N., et al: ‘Reconfigurable control of piecewise affine systems with actuator and sensor faults: stability and tracking’, Automatica, 2011, 47, (4), pp. 678691.
    13. 13)
      • 6. Pham, Q., Tabareau, N., Slotine, J.J.: ‘A contraction theory approach to stochastic incremental stability’, IEEE Trans. Autom. Control, 2009, 54, (4), pp. 816820.
    14. 14)
      • 15. Long, L., Zhao, J.: ‘A small-gain theorem for switched interconnected nonlinear systems and its application’, IEEE Trans. Autom. Control, 2014, 59, (4), pp. 10821088.
    15. 15)
      • 37. Zhao, J., Hill, D.J.: ‘Dissipativity theory for switched systems’, IEEE Trans. Autom. Control, 2008, 53, (4), pp. 941953.
    16. 16)
      • 18. Zhang, L., Shi, P., Boukas, E.K., et al: ‘H model reduction for uncertain switched linear discretetime systems’, Automatica, 2008, 44, (11), pp. 29442949.
    17. 17)
      • 28. Hill, D., Moylan, P.: ‘The stability of nonlinear dissipative systems’, IEEE Trans. Autom. Control, 1976, 21, (5), pp. 708711.
    18. 18)
      • 3. Cai, C., Chen, G.: ‘Synchronization of complex dynamical networks by the incremental ISS approach’, Physica A, Stat. Mech. Appl., 2006, 371, (2), pp. 754766.
    19. 19)
      • 34. Byrnes, C.I., Isidori, A., Willems, J.C.: ‘Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems’, IEEE Trans. Autom. Control, 1991, 36, (11), pp. 12281240.
    20. 20)
      • 32. Pavlov, A., Marconi, L.: ‘Incremental passivity and output regulation’, Syst. Control Lett., 2008, 57, (5), pp. 400409.
    21. 21)
      • 14. Zhao, X., Zhang, L., Shi, P., et al: ‘Stability of switched positivelinear systems with average dwell time switching’, Automatica, 2012, 48, (6), pp. 11321137.
    22. 22)
      • 21. Wang, M., Zhao, J.: ‘Quadratic stabilization of a class of switched nonlinear systems via single Lyapunov function’, Nonlinear Anal. Hybrid Syst., 2010, 4, (1), pp. 4453.
    23. 23)
      • 13. Zhao, X., Zhang, L., Shi, P., et al: ‘Stability and stabilization of switched linear systems with mode-dependent average dwell time’, IEEE Trans. Autom. Control, 2012, 57, (7), pp. 18091815.
    24. 24)
      • 9. Zhao, J., Hill, D.J.: ‘On stability L2 gain and H control for switched systems’, Autom. J. IFAC, 2008, 44, (5), pp. 12201232.
    25. 25)
      • 2. Aghannan, N., Rouchon, P.: ‘An intrinsic observer for a class of Lagrangian systems’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 936945.
    26. 26)
      • 26. Sakthivel, R., Saravanakumar, T., Kaviarasan, B., et al: ‘Dissipativity based repetitive control for switched stochastic dynamical systems’, Appl. Math. Comput., 2016, 291, pp. 340353.
    27. 27)
      • 27. Sakthivel, R., Rathika, M., Selvi, S., et al: ‘Observer-based dissipative control for Markovian jump systems via delta operators’, Int. J. Syst. Sci., 2017, 48, (2), pp. 247256.
    28. 28)
      • 7. Zamani, M., Tabuada, P.: ‘Backstepping design for incremental stability’, IEEE Trans. Autom. Control, 2010, 56, (9), pp. 21842189.
    29. 29)
      • 25. Sakthivel, R., Selvi, S., Mathiyalagan, K., et al: ‘Reliable mixed H and passivity-based control for fuzzy Markovian switching systems with probabilistic time delays and actuator failures’, IEEE Trans. Cybern., 2015, 45, (12), pp. 27202731.
    30. 30)
      • 17. Niu, B., Zhao, J.: ‘Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems’, Syst. Control Lett., 2013, 62, (10), pp. 963971.
    31. 31)
      • 36. Li, J., Zhao, J., Chen, C.: ‘Dissipativity and feedback passivation for switched discrete-time nonlinear systems’, Syst. Control Lett., 2016, 87, pp. 4755.
    32. 32)
      • 12. Fralix, B.: ‘Foster-type criteria for markov chains on general spaces’, J. Appl. Prob., 2006, 43, (4), pp. 11941200.
    33. 33)
      • 22. Lian, J., Ge, Y.: ‘ Robust H output tracking control for switched systems under asynchronous switching’, Nonlinear Anal. Hybrid Syst., 2013, 8, pp. 5768.
    34. 34)
      • 29. Haddad, W.M., Chellaboina, V.: ‘Nonlinear control of Hammerstein systems with passive nonlinear dynamics’, IEEE Trans. Autom. Control, 2001, 46, (10), pp. 16301634.
    35. 35)
      • 31. Feng, Z., Zheng, W.X.: ‘On extended dissipativity of discrete-time neural networks with time delay’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 26, (12), pp. 32933300.
    36. 36)
      • 8. Pang, H.B., Zhao, J.: ‘Incremental (Q,S,R)-dissipativity and incremental stability for switched nonlinear systems’, J. Franklin Inst., 2016, 353, (17), pp. 45424564.
    37. 37)
      • 1. Angeli, D.: ‘A Lyapunov approach to incremental stability properties’, IEEE Trans. Autom. Control, 2002, 47, (3), pp. 410421.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0762
Loading

Related content

content/journals/10.1049/iet-cta.2017.0762
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading