http://iet.metastore.ingenta.com
1887

Incremental stability for switched non-linear systems based on geometrically incremental dissipativity

Incremental stability for switched non-linear systems based on geometrically incremental dissipativity

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a geometrically incremental dissipativity is proposed for switched discrete-time non-linear systems using multiple storage functions and multiple supply rates. The uniform incremental stability conditions are derived for geometrically incrementally dissipative discrete-time switched systems by using multiple Lyapunov functions approach and average dwell-time technique. The geometrically incremental dissipativity is preserved for the feedback interconnected switched non-linear systems with a composite switching law, while uniform incremental stability is preserved under some certain conditions. Two numerical examples are given to illustrate the validity of the authors' results.

References

    1. 1)
      • 1. Angeli, D.: ‘A Lyapunov approach to incremental stability properties’, IEEE Trans. Autom. Control, 2002, 47, (3), pp. 410421.
    2. 2)
      • 2. Aghannan, N., Rouchon, P.: ‘An intrinsic observer for a class of Lagrangian systems’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 936945.
    3. 3)
      • 3. Cai, C., Chen, G.: ‘Synchronization of complex dynamical networks by the incremental ISS approach’, Physica A, Stat. Mech. Appl., 2006, 371, (2), pp. 754766.
    4. 4)
      • 4. Li, C.S., Zhao, J.: ‘Output synchronization of discrete-time dynamical networks based on geometrically incremental dissipativity’, ISA Trans., 2017, 66, pp. 209215.
    5. 5)
      • 5. Richter, J.H., Heemels, W.P.M.H., van de Wouw, N., et al: ‘Reconfigurable control of piecewise affine systems with actuator and sensor faults: stability and tracking’, Automatica, 2011, 47, (4), pp. 678691.
    6. 6)
      • 6. Pham, Q., Tabareau, N., Slotine, J.J.: ‘A contraction theory approach to stochastic incremental stability’, IEEE Trans. Autom. Control, 2009, 54, (4), pp. 816820.
    7. 7)
      • 7. Zamani, M., Tabuada, P.: ‘Backstepping design for incremental stability’, IEEE Trans. Autom. Control, 2010, 56, (9), pp. 21842189.
    8. 8)
      • 8. Pang, H.B., Zhao, J.: ‘Incremental (Q,S,R)-dissipativity and incremental stability for switched nonlinear systems’, J. Franklin Inst., 2016, 353, (17), pp. 45424564.
    9. 9)
      • 9. Zhao, J., Hill, D.J.: ‘On stability L2 gain and H control for switched systems’, Autom. J. IFAC, 2008, 44, (5), pp. 12201232.
    10. 10)
      • 10. Wu, L., Ho, D.C., Li, C.W.: ‘Sliding mode control of switched hybrid systems with stochastic perturbation’, Syst. Control Lett., 2011, 60, (8), pp. 531539.
    11. 11)
      • 11. Liu, T., Hill, D.J., Zhao, J.: ‘Output Synchronization of Dynamical Networks with Incrementally-Dissipative Nodes and Switching Topology’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (9), pp. 23122323.
    12. 12)
      • 12. Fralix, B.: ‘Foster-type criteria for markov chains on general spaces’, J. Appl. Prob., 2006, 43, (4), pp. 11941200.
    13. 13)
      • 13. Zhao, X., Zhang, L., Shi, P., et al: ‘Stability and stabilization of switched linear systems with mode-dependent average dwell time’, IEEE Trans. Autom. Control, 2012, 57, (7), pp. 18091815.
    14. 14)
      • 14. Zhao, X., Zhang, L., Shi, P., et al: ‘Stability of switched positivelinear systems with average dwell time switching’, Automatica, 2012, 48, (6), pp. 11321137.
    15. 15)
      • 15. Long, L., Zhao, J.: ‘A small-gain theorem for switched interconnected nonlinear systems and its application’, IEEE Trans. Autom. Control, 2014, 59, (4), pp. 10821088.
    16. 16)
      • 16. Ma, R., Zhao, J.: ‘Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings’, Automatica, 2010, 46, (11), pp. 18191823.
    17. 17)
      • 17. Niu, B., Zhao, J.: ‘Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems’, Syst. Control Lett., 2013, 62, (10), pp. 963971.
    18. 18)
      • 18. Zhang, L., Shi, P., Boukas, E.K., et al: ‘H model reduction for uncertain switched linear discretetime systems’, Automatica, 2008, 44, (11), pp. 29442949.
    19. 19)
      • 19. Yang, H., Jiang, B., Cocquempot, V., et al: ‘Stabilization of switched nonlinear systems with all unstable modes: Applicationtomulti-agentsystems’, IEEE Trans. Autom. Control, 2011, 56, (9), pp. 22302235.
    20. 20)
      • 20. Sun, X., Wang, W., Liu, G., et al: ‘Stability analysis for linear switched systems with time-varying delay’, IEEE Trans. Syst. Man Cybern. B, 2008, 38, (2), pp. 528533.
    21. 21)
      • 21. Wang, M., Zhao, J.: ‘Quadratic stabilization of a class of switched nonlinear systems via single Lyapunov function’, Nonlinear Anal. Hybrid Syst., 2010, 4, (1), pp. 4453.
    22. 22)
      • 22. Lian, J., Ge, Y.: ‘ Robust H output tracking control for switched systems under asynchronous switching’, Nonlinear Anal. Hybrid Syst., 2013, 8, pp. 5768.
    23. 23)
      • 23. Wang, D., Wang, W., Shi, P.: ‘Exponential H filtering for switched linear systems with interval time-varying delay’, Int. J. Robust Nonlinear Control, 2009, 19, (5), pp. 532551.
    24. 24)
      • 24. Willems, J.C.: ‘Dissipative dynamical systems part I: general theory’, Arch. Ration. Mech. Anal., 1972, 45, (5), pp. 321351.
    25. 25)
      • 25. Sakthivel, R., Selvi, S., Mathiyalagan, K., et al: ‘Reliable mixed H and passivity-based control for fuzzy Markovian switching systems with probabilistic time delays and actuator failures’, IEEE Trans. Cybern., 2015, 45, (12), pp. 27202731.
    26. 26)
      • 26. Sakthivel, R., Saravanakumar, T., Kaviarasan, B., et al: ‘Dissipativity based repetitive control for switched stochastic dynamical systems’, Appl. Math. Comput., 2016, 291, pp. 340353.
    27. 27)
      • 27. Sakthivel, R., Rathika, M., Selvi, S., et al: ‘Observer-based dissipative control for Markovian jump systems via delta operators’, Int. J. Syst. Sci., 2017, 48, (2), pp. 247256.
    28. 28)
      • 28. Hill, D., Moylan, P.: ‘The stability of nonlinear dissipative systems’, IEEE Trans. Autom. Control, 1976, 21, (5), pp. 708711.
    29. 29)
      • 29. Haddad, W.M., Chellaboina, V.: ‘Nonlinear control of Hammerstein systems with passive nonlinear dynamics’, IEEE Trans. Autom. Control, 2001, 46, (10), pp. 16301634.
    30. 30)
      • 30. Liu, B., Hill, D.J.: ‘Decomposable dissipativity and related stability for discrete-time switched systems’, IEEE Trans. Autom. Control, 2011, 56, (7), pp. 16661671.
    31. 31)
      • 31. Feng, Z., Zheng, W.X.: ‘On extended dissipativity of discrete-time neural networks with time delay’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 26, (12), pp. 32933300.
    32. 32)
      • 32. Pavlov, A., Marconi, L.: ‘Incremental passivity and output regulation’, Syst. Control Lett., 2008, 57, (5), pp. 400409.
    33. 33)
      • 33. Santoso, H., Hioe, D., Bao, J., et al: ‘Operability analysis of nonlinear processes based on incremental dissipativity’, J. Proc. Control, 2012, 22, (1), pp. 156166.
    34. 34)
      • 34. Byrnes, C.I., Isidori, A., Willems, J.C.: ‘Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems’, IEEE Trans. Autom. Control, 1991, 36, (11), pp. 12281240.
    35. 35)
      • 35. Branicky, M.S.: ‘Multiple Lyapunov functions and other analysis tools for switched and hybrid systems’, IEEE Trans. Autom. Control, 1998, 43, (4), pp. 475482.
    36. 36)
      • 36. Li, J., Zhao, J., Chen, C.: ‘Dissipativity and feedback passivation for switched discrete-time nonlinear systems’, Syst. Control Lett., 2016, 87, pp. 4755.
    37. 37)
      • 37. Zhao, J., Hill, D.J.: ‘Dissipativity theory for switched systems’, IEEE Trans. Autom. Control, 2008, 53, (4), pp. 941953.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0762
Loading

Related content

content/journals/10.1049/iet-cta.2017.0762
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address