Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free MV bound and MV controller for convex-non-linear systems with input constraints

To assess the performance of a control loop based on the minimum variance (MV) benchmark, we need to calculate MV lower bound (MVLB). Even though there is a plethora of literature available for calculating MVLB for the linear systems, these methods are not suitable for non-linear systems. Furthermore, almost all of the real-world applications have been encountered with input variance constraints. These constraints limit controllers' abilities in decreasing the output variability. Therefore, existing MVLB computation methods, which do not account for input constraints, are not realistic when applied to constrained systems. The authors propose a novel approach to estimate MVLB by employing properties of dual Lagrangian functions to address these issues simultaneously in this study. Furthermore, to design the constrained non-linear MV controller (MVC), they propose to use the recurrent neural network for accommodating non-linearities and the input constraints. Then, control loop stability, optimality with respect to MVLB as well as the global convergence of the proposed controller are analytically proved for convex-non-linear systems with input constraints. The proposed control strategy is verified through simulations performed on a non-linear quadruple-tank system. The results indicate that the proposed design provides satisfactory results in decreasing output variance while satisfying the constraints.

References

    1. 1)
      • 16. Liu, Q., Cao, J.: ‘A recurrent neural network based on projection operator for extended general variational inequalities’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2010, 40, (3), pp. 928938.
    2. 2)
      • 14. Béziat, J.-P., Hennet, J.-C.: ‘Generalized minimum variance control of constrained multivariable systems’, Int. J. Model. Simul., 1989, 9, (3), pp. 7984.
    3. 3)
      • 6. Huang, B., Shah, S.L.: ‘Practical issues in multivariable feedback control performance assessment’, J. Process Control, 1998, 8, (5), pp. 421430.
    4. 4)
      • 13. Goodwin, G.C.: ‘Amplitude-constrained minimum-variance controller’, Electron. Lett., 1972, 8, (7), pp. 181182.
    5. 5)
      • 19. Toshani, H., Mohammad Farrokhi, Y.A.: ‘Constrained generalised minimum variance controller design using projection-based recurrent neural network’, IET Control Theory Appl., 2016, 11, (2), pp. 143154.
    6. 6)
      • 7. Alipouri, Y., Poshtan, J.: ‘Minimum variance lower bound estimation and realization for desired structures’, ISA Trans., 2014, 53, (3), pp. 787792.
    7. 7)
      • 28. Kinderlehrer, D., Stampcchia, G.: ‘An introduction to variational in-equalities and their applications’ (Academic, New York, 1980).
    8. 8)
      • 10. Yu, W., Wilson, D.I., Young, B.R.: ‘Control performance assessment for nonlinear systems’, J. Process Control, 2010, 20, (10), pp. 12351242.
    9. 9)
      • 5. Huang, B., Shah, S.L., Miller, R.: ‘Feedforward plus feedback controller performance assessment of MIMO systems’, IEEE Trans. Control Syst. Technol., 2000, 8, (3), pp. 580587.
    10. 10)
      • 4. Wang, X., Huang, B., Chen, T.: ‘Multirate minimum variance control design and control performance assessment: a data-driven subspace approach’, IEEE Trans. Control Syst. Technol., 2007, 15, (1), pp. 6574.
    11. 11)
      • 3. Martin, E.B., Morris, A.J., Zhang, J.: ‘Process performance monitoring using multivariate statistical process control’, IEE Proc. Control Theory Appl., 1996, 143, (2), pp. 132144.
    12. 12)
      • 15. Hanna, J., Upreti, S.R., Lohi, A., et al: ‘Constrained minimum variance control using hybrid genetic algorithm – an industrial experience’, J. Process Control, 2008, 18, (1), pp. 3644.
    13. 13)
      • 1. Huang, B., Shah, S.L.: ‘Performance assessment of control loops: theory and applications’ (Springer, London, 1999).
    14. 14)
      • 20. Yan, Z., Wang, J.: ‘Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks’, IEEE Trans. Ind. Inf., 2012, 8, (4), pp. 746756.
    15. 15)
      • 2. Liu, C., Huang, B., Wang, Q.: ‘Control performance assessment subject to multi-objective user-specified performance characteristics’, IEEE Trans. Control Syst. Technol., 2011, 19, (3), pp. 682691.
    16. 16)
      • 11. Hur, S.H., Grimble, M.J.: ‘Robust nonlinear generalised minimum variance control and fault monitoring’, Int. J. Control Autom. Syst., 2015, 13, (3), p. 547.
    17. 17)
      • 30. Alipouri, Y., Poshtan, J.: ‘Optimal controller design using discrete linear model for a four tank benchmark process’, ISA Trans., 2013, 52, (5), pp. 644651.
    18. 18)
      • 23. Labiod, S., Guerra, T.M.: ‘Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems’, Fuzzy Sets Syst., 2007, 158, (10), pp. 11261137.
    19. 19)
      • 9. Grimble, M.J., Majecki, P.: ‘Non-linear generalised minimum variance control using unstable state-dependent multivariable models’, IET Control Theory Appl., 2013, 7, (4), pp. 551564.
    20. 20)
      • 25. Zhu, M., Martínez, S.: ‘An approximate dual subgradient algorithm for multi-agent non-convex optimization’, IEEE Trans. Autom. Control, 2013, 58, (6), pp. 15341539.
    21. 21)
      • 31. Alipouri, Y., Poshtan, J.: ‘Robust minimum variance lower bound estimation by uncertainty modeling using interval type-2 fuzzy set’, Asian J. Control, 2016, 19, (1), pp. 4756.
    22. 22)
      • 27. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: ‘Nonlinear programming: theory and algorithms’ (Wiley, New York, 1993, 2nd edn.).
    23. 23)
      • 22. Alipouri, Y., Poshtan, J.: ‘Non-affine minimum variance controller design by inverse modeling procedure’, Nonlinear Dyn., 2014, 78, (4), pp. 26752684.
    24. 24)
      • 12. Grimble, M.J., Majacki, P.M.: ‘Nonlinear generalized minimum variance control under actuator saturation’. Proc. 16th IFAC World Congress, Prague, Czech Republic, 2005.
    25. 25)
      • 18. Yan, Y.: ‘A new nonlinear neural network for solving QP problems’, Adv. Neural Netw., 2014, 8886, pp. 347357.
    26. 26)
      • 8. Martensson, C.R.R., Hjalmarsson, H.: ‘Conditions when minimum variance control is the optimal experiment for identifying a minimum variance controller’, Automatica, 2011, 47, (5), pp. 7883.
    27. 27)
      • 29. Xia, Y., Feng, G., Wang, J.: ‘A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints’, IEEE Trans. Neural Netw., 2008, 19, (8), pp. 13401353.
    28. 28)
      • 17. Xia, Y.: ‘A new neural network for solving linear programming problems and its application’, IEEE Trans. Neural Netw., 1996, 7, (2), pp. 525529.
    29. 29)
      • 26. Ortega, J.M., Rheinboldt, W.G.: ‘Iterative solution of nonlinear equations in several variables’ (Academic, New York, 1970).
    30. 30)
      • 24. Zhu, Q.M., Ma, Z., Warwick, K.: ‘Neural network enhanced generalised minimumvariance self-tuning controller for nonlinear discrete-time systems’, IEE Proc. Control Theory Appl., 1999, 146, (4), pp. 319326.
    31. 31)
      • 21. Grimble, M.J.: ‘Non-linear generalized minimum variance feedback, feedforward and tracking control’, Automatica, 2005, 41, (6), pp. 957969.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0760
Loading

Related content

content/journals/10.1049/iet-cta.2017.0760
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address