access icon free Fuzzy disturbance observer-based dynamic surface control for air-breathing hypersonic vehicle with variable geometry inlets

For an air-breathing hypersonic vehicle with a variable geometry inlet (AHV-VGI), a movable translating cowl is used to track the shock on lip conditions to capture enough air mass flow, which can extend the velocity range and be favourable to the acceleration and manoeuvring flight. The authors firstly establish longitudinal dynamics for AHV-VGI, and consider the lumped disturbances which include the unknown external disturbance, the parameter uncertainties and the uncertainty parts introduced by translating cowl. Then, the dynamic surface control strategy based on a fuzzy disturbance observer (FDO) is proposed for AHV-VGI control. The control process for AHV-VGI is divided into two subsystems. For each subsystem, a sliding mode controller is designed, and FDOs are adopted to compensate the lumped disturbances, which can render the disturbance estimate errors convergent. Numerical simulations are presented to illustrate the effectiveness of the proposed method and the advantages of translating cowl.

Inspec keywords: vehicle dynamics; aircraft control; observers; geometry; control system synthesis; uncertain systems; variable structure systems; fuzzy control; numerical analysis; missile control

Other keywords: unknown external disturbance; variable geometry inlets; velocity range; manoeuvring flight; AHV-VGI control; movable translating cowl; fuzzy disturbance observer; numerical simulations; air mass flow; acceleration; parameter uncertainties; dynamic surface control strategy; lumped disturbances; air-breathing hypersonic vehicle; sliding mode controller; longitudinal dynamics; FDO

Subjects: Combinatorial mathematics; Numerical analysis; Combinatorial mathematics; Military control systems; Fuzzy control; Multivariable control systems; Other numerical methods; Vehicle mechanics; Simulation, modelling and identification; Aerospace control

References

    1. 1)
      • 12. Bu, X., Wu, X., Huang, J., et al: ‘Robust Estimation-free prescribed performance back-stepping control of air-breathing hypersonic vehicles without affine models’, Int. J. Control, 2016, 89, (11), pp. 126.
    2. 2)
      • 13. Tian, B., Fan, W., Zong, Q.: ‘Integrated guidance and control for reusable launch vehicle in reentry phase’, Nonlinear Dyn., 2015, 80, (1-2), pp. 397412.
    3. 3)
      • 34. Hu, X., Wu, L., Hu, C., et al: ‘Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle’, IET Control Theory Appl., 2012, 6, (9), pp. 12381249.
    4. 4)
      • 1. Echols, J.A., Puttannaiah, K., Mondal, K., et al: ‘Fundamental control system design issues for scramjet-powered hypersonic vehicles’. AIAA Guidance, Navigation, and Control Conf., 2015.
    5. 5)
      • 11. Bu, X., Wei, D., Wu, X., et al: ‘Guaranteeing preselected tracking quality for air-breathing hypersonic non-affine models with an unknown control direction via concise neural control’, J. Franklin Inst., 2016, 353, (13), pp. 32073232.
    6. 6)
      • 15. Banerjee, S., Wang, Z., Baur, B., et al: ‘L1 adaptive control augmentation for the longitudinal dynamics of a hypersonic glider’, J. Guid. Control Dyn., 2015, 39, (2), pp. 275291.
    7. 7)
      • 39. Garzon, A.: ‘Use of a translating cowl on a SSBJ for improved takeoff performance’. 45th Aiaa Aerospace Sciences Meeting and Exhibit, 2007.
    8. 8)
      • 23. Kim, K.-S., Rew, K.-H., Kim, S.: ‘Disturbance Observer for estimating higher order disturbances in time series expansion’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 19051911.
    9. 9)
      • 29. Wu, G., Meng, X.: ‘Nonlinear disturbance observer based robust backstepping control for a flexible air-breathing hypersonic vehicle’, Aerosp. Sci. Technol., 2016, 54, pp. 174182.
    10. 10)
      • 40. Bolender, M.A., Doman, D.B.: ‘A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle’. AIAA Guidance, Navigation, and Control Conf. and Exhibit, 2005.
    11. 11)
      • 2. Clarks, A., Wu, C., Mirmiranit, M., et al: ‘Development of an airframe-propulsion integrated generic hypersonic vehicle model’. 44 th AIAA Aerospace Sciences Meeting and Exhibit, 2006.
    12. 12)
      • 9. Xu, B., Zhang, Q., Pan, Y.: ‘Neural network based dynamic surface control of hypersonic flight dynamics using Small-Gain theorem’, Neurocomputing, 2016, 173, (3), pp. 690699.
    13. 13)
      • 41. Gao, J., Dou, L., Su, P.: ‘Multi-model switching control of hypersonic vehicle with variable scramjet inlet based on adaptive neural network’. The 12th World Congress Intelligent Control and Automation (2016 WCICA), 2016.
    14. 14)
      • 43. Dou, L., Su, P., Ding, Z.: ‘Modeling and nonlinear control for air-breathing hypersonic vehicle with variable geometry inlet’, Aerosp. Sci. Technol., 2017, 67, pp. 422432.
    15. 15)
      • 20. Bolender, M.A., Doman, D.B.: ‘Nonlinear Longitudinal dynamical model of an air-breathing hypersonic vehicle’, J. Spacecr. Rockets, 2007, 44, (2), pp. 374387.
    16. 16)
      • 26. Chen, W.-H.: ‘Nonlinear disturbance observer-enhanced dynamic inversion control of missiles’, J. Guid. Control Dyn., 2003, 26, (1), pp. 161166.
    17. 17)
      • 8. Lin, C.M., Maa, J.H.: ‘Flight control system design by self-organizing fuzzy logic controller’, J. Guid. Control Dyn., 2015, 20, (1), pp. 189190.
    18. 18)
      • 28. Yang, J., Li, S., Sun, C., et al: ‘Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (2), pp. 12631275.
    19. 19)
      • 25. Sun, H., Yang, Z., Zeng, J.: ‘New tracking-control strategy for airbreathing hypersonic vehicles’, J. Guid. Control Dyn., 2013, 36, (3), pp. 846859.
    20. 20)
      • 38. Zong, Q., Wang, J., Tao, Y.: ‘Adaptive high-order dynamic sliding mode control for a flexible air-breathing hypersonic vehicle’, Int. J. Robust Nonlinear Control, 2013, 23, (15), pp. 17181736.
    21. 21)
      • 22. Ataei, A., Wang, Q.: ‘Non-linear control of an uncertain hypersonic aircraft model using robust sum-of-squares method’, IET Control Theory Appl., 2012, 6, (2), pp. 203215.
    22. 22)
      • 17. Dalle, D., Torrez, S., Driscoll, J.: ‘Performance analysis of variable-geometry scramjet inlets using a low-order model’. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit, 2011.
    23. 23)
      • 21. Dou, L., Shen, Y., Ji, R.: ‘Analysis of the impact of translating cowl on hypersonic vehicle performance’. The 26th Chinese Control and Decision Conf. (2014 CCDC), 2014.
    24. 24)
      • 10. Bu, X., Wu, X., Huang, J., et al: ‘A guaranteed transient performance-based adaptive neural control scheme with low-complexity computation for flexible air-breathing hypersonic vehicles’, Nonlinear Dyn., 2016, 84, (4), pp. 21752194.
    25. 25)
      • 37. Hu, X., Wu, L., Hu, C.: ‘Adaptive sliding mode tracking control for a flexible air-breathing hypersonic vehicle’, J. Franklin Inst., 2012, 349, (2), pp. 559577.
    26. 26)
      • 24. Chen, W.-H., Yang, J., Guo, L., et al: ‘Disturbance-observer-based control and related methods – an overview’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 10831095.
    27. 27)
      • 31. Yang, Z., Meng, B., Sun, H.: ‘A new kind of nonlinear disturbance observer for nonlinear systems with applications to cruise control of air-breathing hypersonic vehicles’, Int. J. Control, 2017, 90, (9), pp. 19351950.
    28. 28)
      • 27. Chen, M., Jiang, C.-S., Wu, Q.-X.: ‘Disturbance-observer-based robust flight control for hypersonic vehicles using neural networks’, Adv. Sci. Lett., 2011, 4, (4-5), pp. 17711775.
    29. 29)
      • 32. Wang, S., Ren, X., Na, J.: ‘Adaptive dynamic surface control based on fuzzy disturbance observer for drive system with elastic coupling’, J. Franklin Inst., 2016, 353, (8), pp. 18991919.
    30. 30)
      • 6. Wang, Q., Stengel, R.F.: ‘Robust nonlinear control of a hypersonic aircraft’, IEEE Trans. Control Syst. Technol., 2012, 13, (1), pp. 1526.
    31. 31)
      • 14. Tian, B., Yin, L., Wang, H.: ‘Finite-time reentry attitude control based on adaptive multivariable disturbance compensation’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 58895898.
    32. 32)
      • 35. Sun, H., Li, S., Yang, J., et al: ‘Non-linear disturbance observer-based back-stepping control for airbreathing hypersonic vehicles with mismatched disturbances’, IET Control Theory Appl., 2014, 8, (17), pp. 18521865.
    33. 33)
      • 4. Kojima, T., Tanatsugu, N., Sato, T., et al: ‘Development study on axisymmetric air inlet for Atrex engine’. 10th AIAA/NAL-NASDA-ISAS Int. Space Planes and Hypersonic Systems and Technologies Conf., 2001.
    34. 34)
      • 30. Wang, J., Wu, Y., Dong, X.: ‘Recursive terminal sliding mode control for hypersonic flight vehicle with sliding mode disturbance observer’, Nonlinear Dyn., 2015, 81, (3), pp. 14891510.
    35. 35)
      • 33. Ji, D.H., Jeong, S.C., Ju, H.P.: ‘Robust adaptive backstepping synchronization for a class of uncertain chaotic systems using fuzzy disturbance observer’, Nonlinear Dyn., 2012, 69, (3), pp. 11251136.
    36. 36)
      • 3. Huebner, L.D., Rock, K.E., Ruf, E.G., et al: ‘Hyper-X flight engine ground testing for flight risk reduction’, J. Spacecr. Rockets, 2001, 38, (6), pp. 844852.
    37. 37)
      • 42. Rodriguez, A., Dickeson, J., Cifdaloz, O., et al: ‘Modeling and control of scramjet-powered hypersonic vehicles: challenges, trends, and tradeoffs’. AIAA Guidance, Navigation and Control Conf. and Exhibit, 2008.
    38. 38)
      • 16. Raj, N.O.P., Venkatasubbaiah, K.: ‘A new approach for the design of hypersonic scramjet inlets’, Phys. Fluids, 2012, 24, (8), p. 086103.
    39. 39)
      • 5. Kuranov, A., Sheikin, E.: ‘Mhd control by external and internal flows in scramjet under Ajax concept’. 41st Aerospace Sciences Meeting and Exhibit, 2003.
    40. 40)
      • 36. Wu, H.-N., Liu, Z.-Y., Guo, L.: ‘Robust l gain fuzzy disturbance observer-based control design with adaptive bounding for a hypersonic vehicle’, IEEE Trans. Fuzzy Syst., 2014, 22, (6), pp. 14011412.
    41. 41)
      • 18. Xie, L.-r., Guo, R.-w.: ‘Numerical simulation and experimental validation of flow in mixed-compression axisymmetric supersonic inlet with fixed-geometry’, Acta Aeronaut. Astronaut. Sinica A and B, 2007, 28, (1), p. 78.
    42. 42)
      • 7. Fiorentini, L., Serrani, A., Bolender, M.A., et al: ‘Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles’, J. Guid. Control Dyn., 2012, 32, (2), pp. 402417.
    43. 43)
      • 19. Jin, Z., Zhang, K., Chen, W., et al: ‘Design and regulation of two-dimensional variable geometry hypersonic inlets’, Acta Aeronaut. Astronaut. Sinica, 2013, 34, (4), pp. 779786.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0742
Loading

Related content

content/journals/10.1049/iet-cta.2017.0742
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading