http://iet.metastore.ingenta.com
1887

Group consensus control for discrete-time heterogeneous first- and second-order multi-agent systems

Group consensus control for discrete-time heterogeneous first- and second-order multi-agent systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the group consensus problem for heterogeneous multi-agent systems composed of discrete-time first- and second-order agents. Two kinds of distributed group consensus protocols are proposed based on the information of the agent itself and its neighbours. Model transformation is introduced and some sufficient conditions are derived for heterogeneous multi-agent systems with directed communication topology to reach group consensus by utilising the matrix theory and the graph theory. Finally, simulation examples are given to validate the effectiveness of the theoretical results.

References

    1. 1)
      • 1. Lin, Z., Francis, B., Maggiore, M.: ‘Necessary and sufficient graphical conditions for formation control of unicycles’, IEEE Trans. Autom. Control, 2005, 50, (1), pp. 121127.
    2. 2)
      • 2. Olfati-Saber, R.: ‘Flocking for multi-agent dynamic systems: algorithms and theory’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 401420.
    3. 3)
      • 3. Paganini, F., Doyle, J.C., Low, S.H.: ‘Scalable laws for stable network congestion control’. Proc. IEEE Conf. Decision and Control, Orlando, Florida, USA, 2001, pp. 185190.
    4. 4)
      • 4. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    5. 5)
      • 5. Ren, W., Beard, R.W.: ‘Consensus seeking in multiagent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661.
    6. 6)
      • 6. Hu, J., Cao, J.: ‘Hierarchical cooperative control for multiagent systems with switching directed topologies’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (10), pp. 24532463.
    7. 7)
      • 7. Ren, W., Atkins, E.M.: ‘Distributed multi-vehicle coordinated control via local information exchange’, Int. J. Robust Nonlinear Control, 2007, 17, (10-11), pp. 10021033.
    8. 8)
      • 8. Eichler, A., Werner, H.: ‘Closed-form solution for optimal convergence speed of multi-agent systems with discrete-time double-integrator dynamics for fixed weight ratios’, Syst. Control Lett., 2014, 71, pp. 713.
    9. 9)
      • 9. Lin, P., Jia, Y.: ‘Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies’, Automatica, 2009, 45, (9), pp. 21542158.
    10. 10)
      • 10. Yu, W., Chen, G., Cao, M.: ‘Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems’, Automatica, 2010, 46, (6), pp. 10891095.
    11. 11)
      • 11. Song, Q., Liu, F., Wen, G., et al: ‘Distributed position-based consensus of second-order multiagent systems with continuous/intermittent communication’, IEEE Trans. Cybern., 2017, 47, (8), pp. 18601871.
    12. 12)
      • 12. Wieland, P., Kim, J.S., Scheu, H., et al: ‘On consensus in multi-agent systems with linear high-order agents’. Proc. Int. Federation of Accountants (IFAC) World Congress, Seoul, Korea, 2008, pp. 15411546.
    13. 13)
      • 13. Li, Z., Duan, Z., Chen, G.: ‘Dynamic consensus of linear multi-agent systems’, IET Control Theory Appl., 2011, 5, (1), pp. 1928.
    14. 14)
      • 14. Cao, Y., Zhang, L., Li, C., et al: ‘Observer-based consensus tracking of nonlinear agents in hybrid varying directed topology’, IEEE Trans. Cybern., 2017, 47, (8), pp. 22122222.
    15. 15)
      • 15. Wieland, P., Sepulchre, R., Allgöwer, F.: ‘An internal model principle is necessary and sufficient for linear output synchronization’, Automatica, 2011, 47, (5), pp. 10681074.
    16. 16)
      • 16. Kim, H., Shim, H., Seo, J.H.: ‘Output consensus of heterogeneous uncertain linear multi-agent systems’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 200206.
    17. 17)
      • 17. Grip, H.J., Yang, T., Saberi, A., et al: ‘Output synchronization for heterogeneous networks of non-introspective agents’, Automatica, 2012, 48, (10), pp. 24442453.
    18. 18)
      • 18. Ding, L., Zheng, W.X.: ‘Consensus tracking in heterogeneous nonlinear multi-agent networks with asynchronous sampled-data communication’, Syst. Control Lett., 2016, 96, pp. 151157.
    19. 19)
      • 19. Zheng, Y., Zhu, Y., Wang, L.: ‘Consensus of heterogeneous multi-agent systems’, IET Control Theory Appl., 2011, 5, (16), pp. 18811888.
    20. 20)
      • 20. Feng, Y., Xu, S., Lewis, F.L., et al: ‘Consensus of heterogeneous first- and second-order multi-agent systems with directed communication topologies’, Int. J. Robust Nonlinear Control, 2015, 25, (3), pp. 362375.
    21. 21)
      • 21. Liu, C., Liu, F.: ‘Stationary consensus of heterogeneous multi-agent systems with bounded communication delays’, Automatica, 2011, 47, (9), pp. 21302133.
    22. 22)
      • 22. Hu, H., Yu, W., Xuan, Q., et al: ‘Group consensus for heterogeneous multi-agent systems with parametric uncertainties’, Neurocomputing, 2014, 142, pp. 383392.
    23. 23)
      • 23. Yu, J., Wang, L.: ‘Group consensus in multi-agent systems with switching topologies and communication delays’, Syst. Control Lett., 2010, 59, pp. 340348.
    24. 24)
      • 24. Feng, Y., Xu, S., Zhang, B.: ‘Group consensus control for double-integrator dynamic multiagent systems with fixed communication topology’, Int. J. Robust Nonlinear Control, 2014, 24, (3), pp. 532547.
    25. 25)
      • 25. Ma, Q., Wang, Z., Miao, G.: ‘Second-order group consensus for multi-agent systems via pinning leader-following approach’, J. Franklin Inst., 2014, 351, (3), pp. 12881300.
    26. 26)
      • 26. Qin, J., Ma, Q., Zheng, W.X., et al: ‘Robust H group consensus for interacting clusters of integrator agents’, IEEE Trans. Autom. Control, 2017, 62, (7), pp. 35593566.
    27. 27)
      • 27. Wen, G., Huang, J., Wang, C., et al: ‘Group consensus control for heterogeneous multi-agent systems with fixed and switching topologies’, Int. J. Control, 2016, 89, (2), pp. 259269.
    28. 28)
      • 28. Wen, G., Yu, Y., Peng, Z., et al: ‘Dynamical group consensus of heterogenous multi-agent systems with input time delays’, Neurocomputing, 2016, 175, pp. 278286.
    29. 29)
      • 29. Zheng, Y., Wang, L.: ‘A novel group consensus protocol for heterogeneous multi-agent systems’, Int. J. Control, 2015, 88, (11), pp. 23472353.
    30. 30)
      • 30. Godsil, C., Royle, G.: ‘Algebraic graph theory’ (Springer-Verlag Press, New York, 2001).
    31. 31)
      • 31. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, Cambridge, UK, 1985).
    32. 32)
      • 32. Ren, W., Beard, R.W.: ‘Distributed consensus in multi-vehicle cooperative control’ (Springer-Verlag Press, London, 2008).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0728
Loading

Related content

content/journals/10.1049/iet-cta.2017.0728
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address