access icon free State-feedback controller design for disturbance decoupling of Boolean control networks

This paper investigates the disturbance decoupling problem for Boolean control networks. Firstly, using the matrix semi-tensor product, the logical dynamic equations of Boolean control networks are converted into discrete time linear equations. Secondly, the solvability of the disturbance decoupling problem is analyzed based on the structure matrices of BCNs, and a method for design state-feedback controllers is put forward to deal with this problem. Two necessary and sufficient conditions for the disturbance decoupling problem of BCNs are obtained. Then an algorithm is provided to design controllers for calculating the disturbance decoupling forms of Boolean control networks. Finally, an illustrative example is given to describe the proposed algorithm.

Inspec keywords: matrix algebra; discrete time systems; control system synthesis; Boolean functions; state feedback; tensors

Other keywords: matrix semitensor product; structure matrices; Boolean control networks; disturbance decoupling; sufficient conditions; logical dynamic equations; BCN; necessary conditions; discrete time linear equations; state-feedback controller design

Subjects: Algebra; Discrete control systems; Control system analysis and synthesis methods

References

    1. 1)
      • 22. Zhao, Y., Kim, J., Filippone, M.: ‘Aggregation algorithm towards large-scale Boolean network analysis’, IEEE Trans. Autom. Control, 2013, 58, (8), pp. 19761985.
    2. 2)
      • 31. Zhang, L., Feng, J., Feng, X.: ‘Further results on disturbance decoupling of mix-valued logical networks’, IEEE Trans. Autom. Control, 2014, 59, (6), pp. 16301634.
    3. 3)
      • 12. Cheng, D., Qi, H., Li, Z.: ‘Analysis and control of Boolean networks: a semi-tensor product approach’ (Springer, 2011).
    4. 4)
      • 20. Chen, H., Liang, J., Liu, Y.: ‘Synchronisation analysis of Boolean networks based on equivalence’, IET Control Theory Appl., 2015, 9, (15), pp. 22422248.
    5. 5)
      • 14. Laschov, D., Margaliot, M.: ‘A maximum principle for single-input Boolean control networks’, IEEE Trans. Autom. Control, 2011, 56, (4), pp. 913917.
    6. 6)
      • 15. Zhao, Y., Li, Z., Cheng, D.: ‘Optimal control of logical control networks’, IEEE Trans. Autom. Control, 2011, 56, (8), pp. 17661776.
    7. 7)
      • 29. Yang, M., Li, R., Chu, T.: ‘Controller design for disturbance decoupling of Boolean control networks’, Automatica, 2013, 49, (1), pp. 273277.
    8. 8)
      • 32. Li, H., Wang, Y., Xie, L.: ‘Disturbance decoupling control design for switched Boolean control networks’, Syst. Control Lett., 2014, 72, pp. 16.
    9. 9)
      • 9. Faure, A., Naldi, A., Chaouiya, C., et al.: ‘Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle’, Bioinformatics, 2006, 22, (14), pp. e124e131.
    10. 10)
      • 13. Liu, Y., Chen, H., Lu, J.: ‘Controllability of probabilistic Boolean control networks based on transition probability matrices’, Automatica, 2015, 52, pp. 340345.
    11. 11)
      • 5. Ching, W.K., Zhang, S.Q., Ng, M.K.: ‘An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks’, Bioinformatics, 2007, 23, (12), pp. 15111518.
    12. 12)
      • 3. Chaves, M., Albert, R., Sontag, E.: ‘Robustness and fragility of Boolean models for genetic regulatory networks’, J. Theor. Biol., 2005, 235, (3), pp. 431449.
    13. 13)
      • 27. Cheng, D.: ‘Disturbance decoupling of Boolean control networks’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 210.
    14. 14)
      • 21. Cheng, D., Xu, X.: ‘Bi-decomposition of multi-valued logical functions and its applications’, Automatica, 2013, 49, (7), pp. 19791985.
    15. 15)
      • 35. Horn, R.A., Johnson, C.R.: ‘Topics in matrix analisis’ (Cambridge University Press, Cambridge, 1989).
    16. 16)
      • 23. Zou, Y., Zhu, J.: ‘Kalman decomposition for Boolean control networks’, Automatica, 2015, 54, pp. 6571.
    17. 17)
      • 8. Pal, R., Datta, A., Bittner, M., et al.: ‘Intervention in context-sensitive probabilistic Boolean networks’, Bioinformatics, 2005, 21, (7), pp. 12111218.
    18. 18)
      • 18. Fornasini, E., Valcher, M.: ‘Observability, reconstructibility and state observers of Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (6), pp. 13901401.
    19. 19)
      • 10. Robert, F.: ‘Discrete iterations: a metric study’ (Springer Series in Computational Mathematics, 1986).
    20. 20)
      • 1. Kauffman, S.: ‘Metabolic stability and epigenesis in randomly constructed genetic nets’, J. Theor. Biol., 1969, 22, (3), pp. 437467.
    21. 21)
      • 28. Cheng, D., Qi, H.: ‘State-space analysis of Boolean networks’, IEEE Trans. Neural Netw., 2010, 21, (4), pp. 584594.
    22. 22)
      • 33. Meng, M., Feng, J.: ‘Topological structure and the disturbance decoupling problem of singular Boolean networks’, IET Control Theory Appl., 2014, 8, (13), pp. 12471255.
    23. 23)
      • 4. Klamt, S., Saez-Rodriguez, J., Lindquist, J.A.: ‘A methodology for the structural and functional analysis of signaling and regulatory networks’, BMC bioinformatics, 2006, 7, p. 56.
    24. 24)
      • 17. Wu, Y., Shen, T.: ‘An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical systems’, Syst. Control Lett., 2015, 82, pp. 108114.
    25. 25)
      • 6. Datta, A., Choudhary, A., Bittner, M., et al.: ‘External control in markovian genetic regulatory networks: the imperfect information case’, Bioinformatics, 2004, 20, (6), pp. 924930.
    26. 26)
      • 19. Xu, X., Hong, Y.: ‘Solvability and control design for synchronization of Boolean networks’, Journal of Systems Science & Complexity, 2013, 26, (6), pp. 871885.
    27. 27)
      • 2. Albert, R., Othmer, H.: ‘The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster’, J. Theor. Biol., 2003, 223, (1), pp. 118.
    28. 28)
      • 11. Cheng, D., Qi, H.: ‘A linear representation of dynamics of Boolean networks’, IEEE Trans. Autom. Control, 2010, 55, (10), pp. 22512258.
    29. 29)
      • 30. Liu, Z., Wang, Y.: ‘Disturbance decoupling of mix-valued logical networks via the semi-tensor product method’, Automatica, 2012, 48, (8), pp. 18391844.
    30. 30)
      • 25. Sun, Y., Feng, G., Cao, J.: ‘Robust stochastic stability analysis of genetic regulatory networks with disturbance attenuation’, Neurocomputing, 2012, 79, pp. 3949.
    31. 31)
      • 7. Shmulevich, I., Kauffman, S.: ‘Activities and sensitivities in Boolean network models’, Phys. Rev. Lett., 2004, 93, (4), pp. 048701.
    32. 32)
      • 26. Chen, B.S., Wang, Y.C.: ‘On the attenuation and amplification of molecular noise in genetic regulatory networks’, BMC Bioinformatics, 2006, 7, (52), pp. 114.
    33. 33)
      • 24. Zhang, K., Zhang, L., Xie, L.: ‘Invertibility and nonsingularity of Boolean control networks’, Automatica, 2015, 60, pp. 155164.
    34. 34)
      • 34. Yao, J., Feng, J.: ‘Comments on ‘Disturbance decoupling of Boolean control networks’, IEEE Trans. Autom. Control, 2011, 56, (12), pp. 30013002.
    35. 35)
      • 16. Li, F., Sun, J.: ‘Controllability and optimal control of a temporal Boolean network’, Neural Networks, 2012, 34, pp. 1017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0714
Loading

Related content

content/journals/10.1049/iet-cta.2017.0714
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading