Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multiple models and neural networks based adaptive PID decoupling control of mine main fan switchover system

Mine main fan switchover system (MMFSS) consists of two main fans, which are equipped with a horizontal air door and a vertical air door, respectively. The purpose of operating MMFSS is to ensure small fluctuation of the underground airflow quantity and to guarantee safe operations of both fans simultaneously by controlling the four air doors during switchover from working to standby fan. MMFSS has time-varying dynamics under different operating conditions, strong coupling, high non-linearities and uncertainty in character, applying conventional control methods can not lead to satisfactory performances. In this study, an adaptive intelligent decoupling proportional–integral–derivative (PID) control method is proposed, where the unmodelled dynamics are estimated and compensated by neural networks, the coupling effect is eliminated by the designed decoupling compensator, and a switching mechanism among multiple models is employed to deal with the effect of time-varying dynamics. By inspiring from the generalised minimum variance control law concept, the parameters of the developed controller are determined. The stability of the close-loop system and the convergence of tracking error are examined. Finally, simulations of MMFSS show the feasibility and effectiveness of the obtained results.

References

    1. 1)
      • 29. Zhang, M., Xu, S., Fulcher, J.: ‘Neuron-adaptive higher order neural-network models for automated financial data modeling’, IEEE Trans. Neural Netw., 2002, 13, (1), pp. 188204.
    2. 2)
      • 30. Chen, L., Narendra, K.S.: ‘Nonlinear adaptive control using neural networks and multiple models’, Automatica, 2001, 37, (8), pp. 12451255.
    3. 3)
      • 5. Tie, M., Bi, J., Ding, J.: ‘Hybrid intelligent modelling and simulation for cold tandem rolling process’, IET Control Theory A., 2016, 10, (12), pp. 14201430.
    4. 4)
      • 16. Neupert, J., Arnold, E., Schneider, K., et al: ‘Tracking and anti-sway control for boom cranes’, Control Eng. Pract., 2010, 18, (1), pp. 3144.
    5. 5)
      • 13. Chen, B., Liu, X.: ‘Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes’, IEEE T. Fuzzy Syst., 2005, 13, (6), pp. 832847.
    6. 6)
      • 14. Comanescu, M., Xu, L., Batzel, T.D.: ‘Decoupled current control of sensorless induction-motor drives by integral sliding mode’, IEEE T. Ind. Electron., 2008, 55, (11), pp. 38363845.
    7. 7)
      • 26. Kazemi, M., Arefi, M.M.: ‘Nonlinear generalized minimum variance control and control performance assessment of nonlinear systems based on a Wiener model’, Trans. Inst. Measurement Control, 2017, pp. 116DOI: 10.1177/0142331216685395.
    8. 8)
      • 19. Ghosh, A., Krishnan, T.R., Subudhi, B.: ‘Robust proportional-integral-derivative compensation of an inverted cart-pendulum system: an experimental study’, IET Control Theory A., 2012, 6, (8), pp. 11451152.
    9. 9)
      • 9. Narendra, K.S., Han, Z.: ‘A new approach to adaptive control using multiple models’, Int. J. Adapt. Control Signal Process., 2012, 26, (8), pp. 778799.
    10. 10)
      • 24. Leontaritis, I.J., Billings, S.A.: ‘Input–output parametric models for non-linear systems Part I: deterministic non-linear systems’, Int J. Control, 1985, 41, (2), pp. 303328.
    11. 11)
      • 18. Zargarzadeh, H., Motlagh, M.R.J., Arefi, M.M.: ‘Multivariable robust optimal PID controller design for a non-minimum phase boiler system using loop transfer recovery technique’. 16th Mediterranean Conf. on Control Automation, Congress Centre, Ajaccio, France, 25–27 June 2008, pp. 15201525.
    12. 12)
      • 6. Tong, S.C., He, X.L., Zhang, H.G.: ‘A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control’, IEEE Trans. Fuzzy Syst., 2009, 17, (5), pp. 10591069.
    13. 13)
      • 7. Kazemi, M., Arefi, M.M.: ‘A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems’, ISA Trans., 2017, 67, pp. 382388.
    14. 14)
      • 31. Goodwin, G., Ramadge, P., Caines, P.: ‘Discrete-time multivariable adaptive control’, IEEE T. Automat. Contr., 1980, 25, (3), pp. 449456.
    15. 15)
      • 20. Zhao, C., Guo, L.: ‘PID controller design for second order nonlinear uncertain systems’, Sci. China Inform. Sci., 2017, 60, (002), pp. 113.
    16. 16)
      • 11. Xie, Y.Q., Tan, Y.H., Dong, R.L.: ‘Nonlinear modeling and decoupling control of XY micropositioning stages with piezoelectric actuators’, IEEE-ASME T. Mech., 2013, 18, (3), pp. 821832.
    17. 17)
      • 22. Ward-Smith, A.J.: ‘Internal fluid flow-the fluid dynamics of flow in pipes and ducts’ (Clarendon Press, Oxford, UK, 1980).
    18. 18)
      • 3. Ge, H.Q., Ma, X.P., Wu, X.Z., et al: ‘Fuzzy PID control of mine main fan switchover aiming at invariant ventilation’. Proc. IEEE Int. Conf. on Intellegence Science and Information Engineering, Wuhan, China, August 2011, pp. 325328.
    19. 19)
      • 4. Ge, H.Q., Ma, X.P., Wu, X.Z., et al: ‘Study on mine main fan switchover aiming at invariant ventilation based on nonlinear constrained programming’, Int. J. Digital Content Technol. Appl., 2012, 6, (17), pp. 496505.
    20. 20)
      • 8. Ramezani, Z., Arefi, M.M., Zargarzadeh, H., et al: ‘Neuro observer-based control of pure feedback MIMO systems with unknown control direction’, IET Control Theory A., 2016, 11, (2), pp. 213224.
    21. 21)
      • 17. Chien, T.L., Chen, C.C., Huang, C.J.: ‘Feedback linearization control and its application to MIMO cancer immunotherapy’, IEEE T. Contr. Syst. T., 2010, 18, (4), pp. 953961.
    22. 22)
      • 1. Zhou, A., Wang, K.: ‘A transient model for airflow stabilization induced by gas accumulations in a mine ventilation network’, J. Loss Prev. Process Ind., 2017, 47, pp. 104109.
    23. 23)
      • 27. Chen, L., Narendra, K.S.: ‘Intelligent control using multiple neural networks’, Int. J. Adapt. Control Signal Process., 2003, 17, (6), pp. 417430.
    24. 24)
      • 32. Arefi, M.M., Montazeri, A., Poshtan, J., et al: ‘Wiener-neural identification and predictive control of a more realistic plug-flow tubular reactor’, Chem. Eng. J., 2008, 138, (1), pp. 274282.
    25. 25)
      • 2. Wu, X.Z., Ma, X.P., Ren, Z.H.: ‘Study on coal mine main fan automatic switchover aiming at ventilation unceasing and its numerical simulation’. Proc. 2nd Asia-Pacific Conf. on Computational Intelligence and Industrial Applications, Wuhan, China, March 2010, vol. 2, pp. 227230.
    26. 26)
      • 10. Fu, Y., Chai, T.Y.: ‘Nonlinear multivariable adaptive control using multiple models and neural networks’, Automatica, 2007, 43, (6), pp. 11011110.
    27. 27)
      • 12. Wu, M., Yan, J., She, J.H., et al: ‘Intelligent decoupling control of gas collection process of multiple asymmetric coke ovens’, IEEE T. Ind. Electron., 2009, 56, (7), pp. 27822792.
    28. 28)
      • 23. Hu, Y., Koroleva, O.I., Krstić, M.: ‘Nonlinear control of mine ventilation networks’, Syst. Control Lett., 2003, 49, (4), pp. 239254.
    29. 29)
      • 15. Pradhan, J.K., Ghosh, A.: ‘Design and implementation of decoupled compensation for a twin rotor multiple-input and multiple-output system’, IET Control Theory A., 2013, 7, (2), pp. 282289.
    30. 30)
      • 28. Park, J., Sandberg, I.W.: ‘Universal approximation using radial-basis-function networks’, Neural Comput., 1991, 3, (2), pp. 246257.
    31. 31)
      • 21. Kocić, D.D.: ‘On the autonomy of local systems in mine ventilation’. Proc. 2nd Mine Ventilation Congress, Reno, USA, 1979.
    32. 32)
      • 25. Patete, A., Furuta, K., Tomizuka, M.: ‘Self-tuning control based on generalized minimum variance criterion for auto-regressive models’, Automatica, 2008, 44, (8), pp. 19701975.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0701
Loading

Related content

content/journals/10.1049/iet-cta.2017.0701
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address