access icon free On-line aerodynamic identification of quadrotor and its application to tracking control

This study investigates the aerodynamic effects and the tracking control problem of quadrotor-type unmanned aerial vehicles. The authors first present the on-line identification of the aerodynamic parameters by using the recursive least squares algorithm based on the measurement outputs of the accelerometer. Then, the non-linear discrete-time trajectory tracking controllers with aerodynamic compensation have been designed. Through identifying and compensating the external aerodynamics on line, the simulation results show that the tracking performance has been enhanced, especially when the vehicle is in some flight envelopes where the aerodynamics have significant effects on the quadrotor dynamics, such as the large-acceleration flight regime.

Inspec keywords: nonlinear control systems; autonomous aerial vehicles; mobile robots; discrete time systems; helicopters; trajectory control; aerodynamics; compensation

Other keywords: online aerodynamic identification; aerodynamic compensation; quadrotor-type unmanned aerial vehicles; recursive least squares algorithm; aerodynamic effects; tracking control; aerodynamic parameters; large-acceleration flight regime; nonlinear discrete-time trajectory tracking controllers; accelerometer; quadrotor

Subjects: Telerobotics; Mobile robots; Nonlinear control systems; Vehicle mechanics; Discrete control systems; Aerospace industry; Aerospace control; Fluid mechanics and aerodynamics (mechanical engineering); Spatial variables control

References

    1. 1)
      • 17. Huang, H., Hoffmann, G.M., Waslander, S.L., et al: ‘Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering’. Proc. 2009 IEEE Int. Conf. Robotics and Automation, Kobe, Japan, May 2009, pp. 32773282.
    2. 2)
      • 6. Alexis, B., Nikolakopoulos, G., Tzes, A.: ‘Model predictive quadrotor control: attitude, altitude and position experimental studies’, IET Control Theory Appl., 2012, 6, (12), pp. 18121827.
    3. 3)
      • 4. Mahony, R., Kumar, V., Corke, P.: ‘Multirotor aerial vehicles: modeling, estimation, and control of quadrotor’, IEEE Robot. Autom. Mag., 2012, 19, (3), pp. 2032.
    4. 4)
      • 21. Bangura, M., Mahony, R.: ‘Nonlinear dynamic modeling for high performance control of a quadrotor’. Proc. Australasian Conf. Robotics and Automation, Victoria University of the Wellington, New Zealand, December 2012, pp. 110.
    5. 5)
      • 9. Zuo, Z., Wang, C.L.: ‘Adaptive trajectory tracking control of output constrained multi-rotors systems’, IET Control Theory Appl., 2014, 8, (13), pp. 11631174.
    6. 6)
      • 5. Bouabdallah, S., Siegwart, R.: ‘Full control of a quadrotor’. Proc. 2007 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Diego, CA, October 2007, pp. 153158.
    7. 7)
      • 26. Khalil, H.K.: ‘Nonlinear system’ (Prentice-Hall, New Jersey, 1996, 3rd edn., 2002).
    8. 8)
      • 1. Du, H., Li, S.: ‘Attitude synchronization control for a group of flexible spacecraft’, Automatica, 2014, 50, (2), pp. 646651.
    9. 9)
      • 10. Zuo, Z.: ‘Trajectory tracking control design with command-filtered compensation for a quadrotor’, IET Control Theory Appl., 2010, 4, (11), pp. 23432355.
    10. 10)
      • 19. Bangura, M., Melega, M., Naldi, R., et al: ‘Aerodynamics of rotor blades for quadrotors’, arXiv preprint, arXiv:1601.00733, 2016.
    11. 11)
      • 20. Goodwin, G.C., Sin, K.S.: ‘Adaptive filtering prediction and control’ (Prentice-Hall, New Jersey, 1984, 1st edn.).
    12. 12)
      • 24. Ma, C., Chen, M.Z.Q., Lam, J., et al: ‘Joint unscented Kalman filter for dual estimation in a bifilar pendulum for a small UAV’. Proc. 10th Asian Control Conf., Kota Kinabalu, Malaysia, May 2015, pp. 16.
    13. 13)
      • 13. Omari, S., Hua, M.D., Ducard, G., et al: ‘Nonlinear control of VTOL UAVs incoporating flapping dynamics’. Proc. 2013 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, Japan, November 2013, pp. 24192425.
    14. 14)
      • 23. Metni, N., Pflimlin, J.M., Hamel, T., et al: ‘Attitude and gyro bias estimation for a VTOL UAV’, Control Eng. Pract., 2006, 14, (12), pp. 15111520.
    15. 15)
      • 16. Hoffmann, G.M., Huang, H., Waslander, S., et al: ‘Quadrotor helicopter flight dynamics and control: theory and experiment’. Proc. AIAA Guidance, Navigation and Control Conf. and Exhibit, Hilton Head, South Carolina, August 2007, pp. 120.
    16. 16)
      • 11. Das, A., Subbarao, K., Lewis, F.: ‘Dynamic inversion with zero-dynamics stabilisation for quadrotor control’, IET Control Theory Appl., 2009, 3, (3), pp. 303314.
    17. 17)
      • 25. Roberts, A., Tayebi, A.: ‘Adaptive position tracking of VTOL UAVs’, IEEE Trans. Robot., 2011, 27, (1), pp. 129142.
    18. 18)
      • 18. Kaya, D., Kutay, A.T.: ‘Aerodynamic modeling and parameter estimation of a quadrotor helicopter’. Proc. AIAA Atmospheric Flight Mechanics Conf., Atlanta, GA, June 2014, pp. 20142558.
    19. 19)
      • 8. Lu, H., Liu, C.J., Coombes, M., et al: ‘Online optimisation-based backstepping control design with application to quadrotor’, IET Control Theory Appl., 2016, 10, (14), pp. 16011611.
    20. 20)
      • 15. Leishman, J.G.: ‘Principles of helicopter aerodynamics’ (Cambridge University Press, Cambridge, 2000, 2nd edn., 2006).
    21. 21)
      • 3. Purvis, K.B., Khammash, M.: ‘Estimation and optimal configurations for localization using cooperative UAVs’, IEEE Trans. Control Syst. Technol., 2008, 16, (5), pp. 947958.
    22. 22)
      • 22. Martin, P., Salaün, E.: ‘The true role of accelerometer feedback in quadrotor control’. Proc. 2010 IEEE Int. Conf. Robotics and Automation, Anchorage, AK, May 2010, pp. 16231629.
    23. 23)
      • 2. Wang, Y.Q., Wu, Q.H., Wang, Y.: ‘Distributed consensus protocols for coordinated control of multiple quadrotors under a directed topology’, IET Control Theory Appl., 2013, 7, (14), pp. 17801792.
    24. 24)
      • 12. Lee, D., Jim, H.K., Sastry, S.: ‘Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter’, Int. J. Control Autom. Syst., 2009, 7, (3), pp. 419428.
    25. 25)
      • 14. Fay, G.: ‘Derivation of the aerodynamic forces for the mesicopter simulation’, Technical Report, Stanford University, Stanford, CA, 2001.
    26. 26)
      • 7. Du, H., Shen, H., Zhu, W.: ‘Control of a hovering quadrotor aircraft based finite-time attitude control algorithm’. Proc. 12th IEEE Int. Conf. Control and Automation, Kathmandu, Nepal, June 2016, pp. 192197.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0664
Loading

Related content

content/journals/10.1049/iet-cta.2017.0664
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading