Â© The Institution of Engineering and Technology
This study is concerned with the problem of stability analysis of twodimensional (2D) discretetime Roesser systems with timevarying delays. First, based on an augmented Lyapunovâ€“Krosovskii functional, a less conservative stability criterion incorporating timevarying terms is established by utilising a general freematrixbased inequality. Next, in order to eliminate the timevarying terms without introducing redundant constraints, a quasiconvex combination method is proposed. Then, compared with the criteria derived via the other inequalities, the conservatism analysis is given to prove the proposed criterion can lead to a better result theoretically. Finally, a numerical example is presented to illustrate the advantage of the presented method.
References


1)

1. Whalley, R.: ‘Twodimensional digital filters’, Appl. Math. Modell., 1990, 14, pp. 304–311.

2)

2. Xu, S., Lam, J., Lin, Z., et al: ‘Positive real control of twodimensional systems: Roesser models and linear repetitive processes’, Int. J. Control, 2003, 76, pp. 1047–1058.

3)

3. Bracewell, R.N.: ‘Twodimensional imaging’ (PrenticeHall, Englewood Cliffs, NJ, 1995).

4)

4. Roesser, R.P.: ‘A discrete statespace model for linear image processing’, IEEE Tran. Autom. Control, 1975, 20, pp. 1–10.

5)

5. Li, X., Gao, H.: ‘Robust finite frequency H∞ filtering for uncertain 2D Roesser systems’, Automatica, 2012, 48, pp. 1163–1170.

6)

6. Duan, Z., Xiang, Z., Karimi, H.R.: ‘Delaydependent exponential stabilization of positive 2D switched statedelayed systems in the Roesser model’, Inf. Sci., 2014, 272, pp. 173–184.

7)

7. Rogers, E., Galkowski, K., Paszke, W., et al: ‘Multidimensional control systems: case studies in design and evaluation’, Multidimens. Syst. Signal Process., 2015, 26, pp. 895–939.

8)

8. Hien, L.V., Trinh, H.: ‘A novel approach to exponential stability of continuoustime Roesser systems with directional timevarying delays’, J. Franklin Inst., 2017, 354, pp. 1023–1041.

9)

9. Chen, S.F.: ‘Delaydependent stability for 2D systems with timevarying delay subject to state saturation in the Roesser model’, Appl. Math. Comput., 2010, 216, pp. 2613–2622.

10)

10. Ghous, I., Xiang, Z.: ‘Reliable H∞ control of 2D continuous nonlinear systems with time varying delays’, J. Franklin Inst., 2015, 352, pp. 5758–5778.

11)

11. Fornasini, E., Marchesini, G.: ‘Doublyindexed dynamical systems: statespace models and structural properties’, Math. Syst. Theory, 1978, 12, pp. 59–72.

12)

12. Hien, L.V., Trinh, H.: ‘Stability analysis of twodimensional Markovian jump statedelayed systems in the Roesser model with uncertain transition probabilities’, Inf. Sci., 2016, 367, pp. 403–417.

13)

13. Ahn, C.K.: ‘l2−l∞ Elimination of overflow oscillations in 2D digital filters described by Roesser model with external interference’, IEEE Trans. Circuits Syst. II Express Briefs, 2013, 60, pp. 361–365.

14)

14. Ahn, C.K., Shi, P., Wu, L.: ‘l∞gain performance analysis for twodimensional Roesser systems with persistent bounded disturbance and saturation nonlinearity’, Inf. Sci., 2016, 333, pp. 126–139.

15)

15. Wang, L., Wang, W., Gao, J., et al: ‘Stability and robust stabilization of 2D continuousdiscrete systems in Roesser model based on KYP lemma’, Multidimens. Syst. Signal Process., 2017, 28, pp. 251–264.

16)

16. Shen, J., Wang, W.: ‘Stability and positive observer design for positive 2D discretetime system with multiple delays’, Int. J. Syst. Sci., 2017, 48, pp. 1136–1145.

17)

17. Xie, X.P., Zhang, Z.W., Hu, S.L.: ‘Control synthesis of Roesser type discretetime 2D TS fuzzy systems via a multiinstant fuzzy statefeedback control scheme’, Neurocomputing, 2015, 151, pp. 1384–1391.

18)

18. Hien, L.V., Trinh, H.: ‘Observers design for 2D positive timedelay Roesser systems’, IEEE Trans. Circuits Syst. II Express Briefs, 2017, .

19)

19. Hien, L.V., Trinh, H.: ‘Delaydependent stability and stabilisation of twodimensional positive Markov jump systems with delays’, IET Control Theory Appl., 2017, 11, pp. 1603–1610.

20)

20. Li, X., Lam, J., Cheung, K.C.: ‘Generalized H∞ model reduction for twodimensional discrete systems’, Multidimens. Syst. Signal Process., 2016, 27, pp. 359–382.

21)

21. Du, C., Xie, L.: ‘H∞Control and filtering of twodimensional systems’ (Springer, Berlin, 2002).

22)

22. Xu, J., Nan, Y., Zhang, G., et al: ‘Delaydependent H∞ control for uncertain 2D discrete systems with state delay in the Roesser model’, Circuit Syst. Signal Process., 2013, 32, pp. 1097–1112.

23)

23. Gao, H., Chen, T.: ‘New results on stability of discretetime systems with timevarying state delay’, IEEE Trans. Autom. Control, 2007, 52, pp. 328–334.

24)

24. He, Y., Wu, M., Liu, G.P., et al: ‘Output feedback stabilization for a discretetime system with a timevarying delay’, IEEE Trans. Autom. Control, 2008, 53, pp. 2372–2377.

25)

25. Feng, Z., Lam, J., Yang, G.H.: ‘Optimal partitioning method for stability analysis of continuous/discrete delay systems’, Int. J. Robust Nonlinear Control, 2015, 25, pp. 559–574.

26)

26. Kwon, O.M., Park, M.J., Park, J.H., et al: ‘Improved robust stability criteria for uncertain discretetime systems with interval timevarying delays via new zero equalities’, IET Control Theory Appl., 2012, 6, pp. 2567–2575.

27)

27. Huang, H., Feng, G.: ‘Improved approach to delaydependent stability analysis of discretetime systems with timevarying delay’, IET Control Theory Appl., 2010, 4, pp. 2152–2159.

28)

28. Meng, X., Lam, J., Du, B., et al: ‘A delaypartitioning approach to the stability analysis of discretetime systems’, Automatica, 2010, 46, pp. 610–614.

29)

29. Nam, P.T., Pathirana, P.N., Trinh, H.: ‘Discrete Wirtingerbased inequality and its application’, J. Franklin Inst., 2015, 352, pp. 1893–1905.

30)

30. Nam, P.T., Trinh, H., Pathirana, P.N.: ‘Discrete inequalities based on multiple auxiliary functions and their applications to stability analysis of timedelay systems’, J. Franklin Inst., 2015, 352, pp. 5810–5831.

31)

31. Seuret, A., Gouaisbaut, F., Fridman, E.: ‘Stability of discretetime systems with timevarying delays via a novel summation inequality’, IEEE Trans. Autom. Control, 2015, 60, pp. 2740–2745.

32)

32. Xie, X., Yue, D., Zhang, H., Xue, Y.: ‘Fault estimation observer design for discretetime TakagiSugeno fuzzy systems based on homogenous polynomially parameterdependent Lyapunov functions’, IEEE Trans. Cybern., 2017, 47, pp. 2504–2513.

33)

33. Kwon, O.M., Park, M.J., Park, J.H., et al: ‘Stability and stabilization for discretetime systems with timevarying delays via augmented LyapunovKrasovskii functional’, J. Franklin Inst., 2013, 350, pp. 521–540.

34)

34. Jiang, X., Han, Q.L., Yu, X.: ‘Stability criteria for linear discretetime systems with intervallike timevarying delay’. Proc. American Control Conf., Portland, OR, USA, 2005, pp. 2817–2822.

35)

35. Chen, J., Lu, J., Xu, S.: ‘Summation inequality and its application to stability analysis for timedelay systems’, IET Control Theory Appl., 2016, 10, pp. 391–395.

36)

36. Zhang, C.K., He, Y., Jiang, L., et al: ‘Delayvariationdependent stability of delayed discretetime systems’, IEEE Trans. Autom. Control, 2016, 61, pp. 2663–2669.

37)

37. Zhang, C.K., He, Y., Jiang, L., et al: ‘An improved summation inequality to discretetime systems with timevarying delay’, Automatica, 2016, 74, pp. 10–15.

38)

38. Zhang, C.K., He, Y., Jiang, L., et al: ‘Summation inequalities to bounded real lemmas of discretetime systems with timevarying delay’, IEEE Trans. Autom. Control, 2017, 62, pp. 2582–2588.

39)

39. Paszke, W., Lam, J., Galkowski, K., et al: ‘Robust stability and stabilisation of 2D discrete statedelayed systems’, Syst. Control Lett., 2004, 51, pp. 277–291.

40)

40. Ghous, I., Xiang, Z.: ‘H∞ stabilization of 2D discrete switched delayed systems represented by the Roesser model subject to actuator saturation’, Trans. Inst. Meas. Control, 2015, 37, pp. 1242–1253.

41)

41. Peng, D., Hua, C.: ‘Improved approach to delaydependent stability and stabilisation of twodimensional discretetime systems with interval timevarying delays’, IET Control Theory Appl., 2015, 9, pp. 1839–1845.

42)

42. Huang, S., Xiang, Z.: ‘Delaydependent robust H∞ control for 2D discrete nonlinear systems with state delays’, Multidimension. Syst. Signal Process., 2014, 25, pp. 775–794.

43)

43. Hien, L.V., Trinh, H.: ‘Stability of twodimensional Roesser systems with timevarying delays via novel 2D finitesum inequalities’, IET Control Theory Appl., 2016, 10, pp. 1665–1674.

44)

44. Kaczorek, T.: ‘Twodimensional linear systems’ (SpringerVerlag, Berlin, 1985).

45)

45. Park, P.G., Ko, J.W., Jeong, C.: ‘Reciprocally convex approach to stability of systems with timevarying delays’, Automatica, 2011, 47, pp. 235–238.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2017.0653
Related content
content/journals/10.1049/ietcta.2017.0653
pub_keyword,iet_inspecKeyword,pub_concept
6
6