http://iet.metastore.ingenta.com
1887

Quasi-convex combination method and its application to the stability analysis of 2D discrete-time Roesser systems with time-varying delays

Quasi-convex combination method and its application to the stability analysis of 2D discrete-time Roesser systems with time-varying delays

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the problem of stability analysis of two-dimensional (2D) discrete-time Roesser systems with time-varying delays. First, based on an augmented Lyapunov–Krosovskii functional, a less conservative stability criterion incorporating time-varying terms is established by utilising a general free-matrix-based inequality. Next, in order to eliminate the time-varying terms without introducing redundant constraints, a quasi-convex combination method is proposed. Then, compared with the criteria derived via the other inequalities, the conservatism analysis is given to prove the proposed criterion can lead to a better result theoretically. Finally, a numerical example is presented to illustrate the advantage of the presented method.

References

    1. 1)
      • 1. Whalley, R.: ‘Two-dimensional digital filters’, Appl. Math. Modell., 1990, 14, pp. 304311.
    2. 2)
      • 2. Xu, S., Lam, J., Lin, Z., et al: ‘Positive real control of two-dimensional systems: Roesser models and linear repetitive processes’, Int. J. Control, 2003, 76, pp. 10471058.
    3. 3)
      • 3. Bracewell, R.N.: ‘Two-dimensional imaging’ (Prentice-Hall, Englewood Cliffs, NJ, 1995).
    4. 4)
      • 4. Roesser, R.P.: ‘A discrete state-space model for linear image processing’, IEEE Tran. Autom. Control, 1975, 20, pp. 110.
    5. 5)
      • 5. Li, X., Gao, H.: ‘Robust finite frequency H filtering for uncertain 2-D Roesser systems’, Automatica, 2012, 48, pp. 11631170.
    6. 6)
      • 6. Duan, Z., Xiang, Z., Karimi, H.R.: ‘Delay-dependent exponential stabilization of positive 2D switched state-delayed systems in the Roesser model’, Inf. Sci., 2014, 272, pp. 173184.
    7. 7)
      • 7. Rogers, E., Galkowski, K., Paszke, W., et al: ‘Multidimensional control systems: case studies in design and evaluation’, Multidimens. Syst. Signal Process., 2015, 26, pp. 895939.
    8. 8)
      • 8. Hien, L.V., Trinh, H.: ‘A novel approach to exponential stability of continuous-time Roesser systems with directional time-varying delays’, J. Franklin Inst., 2017, 354, pp. 10231041.
    9. 9)
      • 9. Chen, S.F.: ‘Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model’, Appl. Math. Comput., 2010, 216, pp. 26132622.
    10. 10)
      • 10. Ghous, I., Xiang, Z.: ‘Reliable H control of 2-D continuous nonlinear systems with time varying delays’, J. Franklin Inst., 2015, 352, pp. 57585778.
    11. 11)
      • 11. Fornasini, E., Marchesini, G.: ‘Doubly-indexed dynamical systems: state-space models and structural properties’, Math. Syst. Theory, 1978, 12, pp. 5972.
    12. 12)
      • 12. Hien, L.V., Trinh, H.: ‘Stability analysis of two-dimensional Markovian jump state-delayed systems in the Roesser model with uncertain transition probabilities’, Inf. Sci., 2016, 367, pp. 403417.
    13. 13)
      • 13. Ahn, C.K.: ‘l2l Elimination of overflow oscillations in 2-D digital filters described by Roesser model with external interference’, IEEE Trans. Circuits Syst. II Express Briefs, 2013, 60, pp. 361365.
    14. 14)
      • 14. Ahn, C.K., Shi, P., Wu, L.: ‘l-gain performance analysis for two-dimensional Roesser systems with persistent bounded disturbance and saturation nonlinearity’, Inf. Sci., 2016, 333, pp. 126139.
    15. 15)
      • 15. Wang, L., Wang, W., Gao, J., et al: ‘Stability and robust stabilization of 2-D continuous-discrete systems in Roesser model based on KYP lemma’, Multidimens. Syst. Signal Process., 2017, 28, pp. 251264.
    16. 16)
      • 16. Shen, J., Wang, W.: ‘Stability and positive observer design for positive 2D discrete-time system with multiple delays’, Int. J. Syst. Sci., 2017, 48, pp. 11361145.
    17. 17)
      • 17. Xie, X.P., Zhang, Z.W., Hu, S.L.: ‘Control synthesis of Roesser type discrete-time 2-D T-S fuzzy systems via a multi-instant fuzzy state-feedback control scheme’, Neurocomputing, 2015, 151, pp. 13841391.
    18. 18)
      • 18. Hien, L.V., Trinh, H.: ‘Observers design for 2-D positive time-delay Roesser systems’, IEEE Trans. Circuits Syst. II Express Briefs, 2017, DOI: 10.1109/TCSII.2017.2723425.
    19. 19)
      • 19. Hien, L.V., Trinh, H.: ‘Delay-dependent stability and stabilisation of two-dimensional positive Markov jump systems with delays’, IET Control Theory Appl., 2017, 11, pp. 16031610.
    20. 20)
      • 20. Li, X., Lam, J., Cheung, K.C.: ‘Generalized H model reduction for two-dimensional discrete systems’, Multidimens. Syst. Signal Process., 2016, 27, pp. 359382.
    21. 21)
      • 21. Du, C., Xie, L.: ‘HControl and filtering of two-dimensional systems’ (Springer, Berlin, 2002).
    22. 22)
      • 22. Xu, J., Nan, Y., Zhang, G., et al: ‘Delay-dependent H control for uncertain 2-D discrete systems with state delay in the Roesser model’, Circuit Syst. Signal Process., 2013, 32, pp. 10971112.
    23. 23)
      • 23. Gao, H., Chen, T.: ‘New results on stability of discrete-time systems with time-varying state delay’, IEEE Trans. Autom. Control, 2007, 52, pp. 328334.
    24. 24)
      • 24. He, Y., Wu, M., Liu, G.P., et al: ‘Output feedback stabilization for a discrete-time system with a time-varying delay’, IEEE Trans. Autom. Control, 2008, 53, pp. 23722377.
    25. 25)
      • 25. Feng, Z., Lam, J., Yang, G.H.: ‘Optimal partitioning method for stability analysis of continuous/discrete delay systems’, Int. J. Robust Nonlinear Control, 2015, 25, pp. 559574.
    26. 26)
      • 26. Kwon, O.M., Park, M.J., Park, J.H., et al: ‘Improved robust stability criteria for uncertain discrete-time systems with interval time-varying delays via new zero equalities’, IET Control Theory Appl., 2012, 6, pp. 25672575.
    27. 27)
      • 27. Huang, H., Feng, G.: ‘Improved approach to delay-dependent stability analysis of discrete-time systems with time-varying delay’, IET Control Theory Appl., 2010, 4, pp. 21522159.
    28. 28)
      • 28. Meng, X., Lam, J., Du, B., et al: ‘A delay-partitioning approach to the stability analysis of discrete-time systems’, Automatica, 2010, 46, pp. 610614.
    29. 29)
      • 29. Nam, P.T., Pathirana, P.N., Trinh, H.: ‘Discrete Wirtinger-based inequality and its application’, J. Franklin Inst., 2015, 352, pp. 18931905.
    30. 30)
      • 30. Nam, P.T., Trinh, H., Pathirana, P.N.: ‘Discrete inequalities based on multiple auxiliary functions and their applications to stability analysis of time-delay systems’, J. Franklin Inst., 2015, 352, pp. 58105831.
    31. 31)
      • 31. Seuret, A., Gouaisbaut, F., Fridman, E.: ‘Stability of discrete-time systems with time-varying delays via a novel summation inequality’, IEEE Trans. Autom. Control, 2015, 60, pp. 27402745.
    32. 32)
      • 32. Xie, X., Yue, D., Zhang, H., Xue, Y.: ‘Fault estimation observer design for discrete-time Takagi-Sugeno fuzzy systems based on homogenous polynomially parameter-dependent Lyapunov functions’, IEEE Trans. Cybern., 2017, 47, pp. 25042513.
    33. 33)
      • 33. Kwon, O.M., Park, M.J., Park, J.H., et al: ‘Stability and stabilization for discrete-time systems with time-varying delays via augmented Lyapunov-Krasovskii functional’, J. Franklin Inst., 2013, 350, pp. 521540.
    34. 34)
      • 34. Jiang, X., Han, Q.L., Yu, X.: ‘Stability criteria for linear discrete-time systems with interval-like time-varying delay’. Proc. American Control Conf., Portland, OR, USA, 2005, pp. 28172822.
    35. 35)
      • 35. Chen, J., Lu, J., Xu, S.: ‘Summation inequality and its application to stability analysis for time-delay systems’, IET Control Theory Appl., 2016, 10, pp. 391395.
    36. 36)
      • 36. Zhang, C.K., He, Y., Jiang, L., et al: ‘Delay-variation-dependent stability of delayed discrete-time systems’, IEEE Trans. Autom. Control, 2016, 61, pp. 26632669.
    37. 37)
      • 37. Zhang, C.K., He, Y., Jiang, L., et al: ‘An improved summation inequality to discrete-time systems with time-varying delay’, Automatica, 2016, 74, pp. 1015.
    38. 38)
      • 38. Zhang, C.K., He, Y., Jiang, L., et al: ‘Summation inequalities to bounded real lemmas of discrete-time systems with time-varying delay’, IEEE Trans. Autom. Control, 2017, 62, pp. 25822588.
    39. 39)
      • 39. Paszke, W., Lam, J., Galkowski, K., et al: ‘Robust stability and stabilisation of 2D discrete state-delayed systems’, Syst. Control Lett., 2004, 51, pp. 277291.
    40. 40)
      • 40. Ghous, I., Xiang, Z.: ‘H stabilization of 2-D discrete switched delayed systems represented by the Roesser model subject to actuator saturation’, Trans. Inst. Meas. Control, 2015, 37, pp. 12421253.
    41. 41)
      • 41. Peng, D., Hua, C.: ‘Improved approach to delay-dependent stability and stabilisation of two-dimensional discrete-time systems with interval time-varying delays’, IET Control Theory Appl., 2015, 9, pp. 18391845.
    42. 42)
      • 42. Huang, S., Xiang, Z.: ‘Delay-dependent robust H control for 2-D discrete nonlinear systems with state delays’, Multidimension. Syst. Signal Process., 2014, 25, pp. 775794.
    43. 43)
      • 43. Hien, L.V., Trinh, H.: ‘Stability of two-dimensional Roesser systems with time-varying delays via novel 2D finite-sum inequalities’, IET Control Theory Appl., 2016, 10, pp. 16651674.
    44. 44)
      • 44. Kaczorek, T.: ‘Two-dimensional linear systems’ (Springer-Verlag, Berlin, 1985).
    45. 45)
      • 45. Park, P.G., Ko, J.W., Jeong, C.: ‘Reciprocally convex approach to stability of systems with time-varying delays’, Automatica, 2011, 47, pp. 235238.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0653
Loading

Related content

content/journals/10.1049/iet-cta.2017.0653
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address