http://iet.metastore.ingenta.com
1887

Multi-vehicle formation in a controllable force field with non-identical controller gains

Multi-vehicle formation in a controllable force field with non-identical controller gains

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this brief, a non-identical gain based control design scheme is proposed to stabilise balanced collective formation in multi-vehicle systems, modelled with non-holonomic unicycle dynamics. Balanced collective formation refers to a situation in which the vehicles' motion causes their positional centroid to become stationary. This study mainly focuses on achieving stable balanced collective formation about the prescribed location of the collective centroid along with desired orientations of the vehicles. It is assumed that the vehicles are moving in a force field which is controlled externally. The proposed control algorithm consists of two controls – one of the controls, pertaining to the external force field, is directly applied to the system, and assumes the same value for all the vehicles. While the other control, which operates with heterogeneous gains, provides the steering force to the vehicles and is derived using Lyapunov analysis. Theoretical findings are validated through numerical simulations.

References

    1. 1)
      • 1. Lin, Z., Wang, L., Han, Z., et al: ‘Distributed formation control of multi-agent systems using complex Laplacian’, IEEE Trans. Autom. Control, 2014, 59, (7), pp. 17651777.
    2. 2)
      • 2. Fax, J.A., Murray, R.M.: ‘Information flow and cooperative control of vehicle formations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 14651476.
    3. 3)
      • 3. Shaferman, V., Shima, T.: ‘Tracking multiple ground targets in urban environments using cooperating unmanned aerial vehicles’, J. Dyn. Syst. Meas. Control, 2015, 137, (5), pp. 111.
    4. 4)
      • 4. Poksawat, P., Wang, L., Mohamed, A.: ‘Automatic tuning of attitude control system for fixed-wing unmanned aerial vehicles’, IET Control Theory Appl., 2016, 10, (17), pp. 22332242.
    5. 5)
      • 5. Dong, X., Yu, B., Shi, Z., et al: ‘Time-varying formation control for unmanned aerial vehicles: Theories and applications’, IEEE Trans. Control Syst. Tech., 2015, 23, (1), pp. 340348.
    6. 6)
      • 6. Hu, J., Xu, Z.: ‘Distributed cooperative control for deployment and task allocation of unmanned aerial vehicle networks’, IET Control Theory Appl., 2013, 7, (11), pp. 15741582.
    7. 7)
      • 7. Millán, P., Orihuela, L., Jurado, I., et al: ‘Formation control of autonomous underwater vehicles subject to communication delays’, IEEE Trans. Control Syst. Tech., 2014, 22, (2), pp. 770777.
    8. 8)
      • 8. Cooperative control of mobile sensor networks: adaptive gradient climbing in a distributed environment', IEEE Trans. Autom. Control, 2004, 49, (8), pp. 12921302.
    9. 9)
      • 9. Ren, W., Beard, R.W.: ‘Distributive consensus in multi-vehicle cooperative control: theory and applications’ (Springer-Verlag, London, UK, 2008).
    10. 10)
      • 10. Mesbahi, M., Egerstedt, M.: ‘Graph theoritical methods in mutiagent networks’ (Princeton University Press, New Jersey, USA, 2010).
    11. 11)
      • 11. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    12. 12)
      • 12. Ren, W., Beard, R.W., Atkins, E.M.: ‘A survey of consensus problems in multi-agent coordination’. Proc. American Control Conf., Portland, OR, USA, 2005, pp. 18591864.
    13. 13)
      • 13. Strogatz, S.H.: ‘From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators’, Physica D: Nonlinear Phenom., 2000, 143, (1–4), pp. 120.
    14. 14)
      • 14. Jain, A., Ghose, D.: ‘Synchronization of multi-agent systems with heterogeneous controllers’, Nonlinear Dyn., 2017, 89, pp. 14331451.
    15. 15)
      • 15. Shi, K., Liu, X., Zhu, H., et al: ‘Novel delay-dependent master-slave synchronization criteria of chaotic Lur'e systems with time-varying-delay feedback control’, Appl. Math. Comput., 2016, 282, pp. 137154.
    16. 16)
      • 16. Shi, K., Tang, Y., Liu, X., et al: ‘Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation’, ISA Trans., 2017, 66, pp.185199.
    17. 17)
      • 17. Bretl, T.: ‘Control of many agents using few instructions’. Proc. 3rd Robotics: Science and Systems Conf., Atlanta, GA, USA, 2007.
    18. 18)
      • 18. Das, K., Ghose, D.: ‘Broadcast control mechanism for positional consensus in multi-agent systems communication’, IEEE Trans. Control Syst. Tech., 2015, 23, (5), pp. 18071826.
    19. 19)
      • 19. Donald, B.R., Levey, C.G., McGray, C.D., et al: ‘An untethered, electrostatic, globally controllable MEMS micro-robot’, J. Microelectromech. Syst., 2006, 15, (1), pp. 115.
    20. 20)
      • 20. Schürle, S., Peyer, K.E., Kratochvil, B.E., et al: ‘Holonomic 5-DOF magnetic control of 1D nanostructures’. Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Saint Paul, MN, USA, 2012, pp. 10811086.
    21. 21)
      • 21. Pieters, R., Lombriser, S., Alvarez-Aguirre, A., et al: ‘Model predictive control of a magnetically guided rolling microrobot’, IEEE Robot. Autom. Lett., 2016, 1, (1), pp. 455460.
    22. 22)
      • 22. Rubenstein, M., Cornejo, A., Nagpal, R.: ‘Programmable self-assembly in a thousand-robot swarm’, Science, 2014, 345, (6198), pp. 795799.
    23. 23)
      • 23. Wang, H., Rubenstein, M.: ‘Autonomous mobile robot with independent control and externally driven actuation’. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), 2016, pp. 36473652.
    24. 24)
      • 24. Park, M.J.: ‘Guiding flows for controlling crowds’, Vis. Comput., 2010, 26, pp. 13831391.
    25. 25)
      • 25. Klein, D.J., Morgansen, K.A.: ‘Controlled collective motion for trajectory tracking’. Proc. American Control Conf., Minneapolis, Minnesota, USA, 2006, pp. 52695275.
    26. 26)
      • 26. Seyboth, G.S., Wu, J., Qin, J., et al: ‘Collective circular motion of unicycle type vehicles with nonidentical constant velocities’, IEEE Trans. Control Netw. Syst., 2014, 1, (2), pp. 167176.
    27. 27)
      • 27. Mei, J., Ren, W., Chen, J.: ‘Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph’, IEEE Trans. Autom. Control, 2016, 61, (8), pp. 20192034.
    28. 28)
      • 28. Sijs, J., van den Bosch, P.: ‘Heterogeneous state estimation in dynamic networked systems’, IET Control Theory Appl., 2015, 9, (15), pp. 22322241.
    29. 29)
      • 29. Shi, K., Liu, X., Tang, Y., et al: ‘Some novel approaches on state estimation of delayed neural networks’, Inf. Sci., 2016, 372, pp. 313331.
    30. 30)
      • 30. Zheng, Y., Zhu, Y., Wang, L.: ‘Consensus of heterogeneous multi-agent systems’, IET Control Theory Appl., 2011, 5, (16), pp. 18811888.
    31. 31)
      • 31. Shao, J., Xie, G., Wang, L.: ‘Leader-following formation control of multiple mobile vehicles’, IET Control Theory Appl., 2007, 1, (2), pp. 545552.
    32. 32)
      • 32. Sepulchre, R., Paley, D.A., Leonard, N.E.: ‘Stabilization of planar collective motion: all-to-all communication’, IEEE Trans. Autom. Control, 2007, 52, (5), pp. 811824.
    33. 33)
      • 33. Cao, Y., Casbeer, D., Milutinovićz, D., et al: ‘Collective circular motion and cooperative circumnavigation for nonholonomic mobile robots using range-based measurements’. Proc. AIAA Guidance, Navigation and Control Conf., San Diego, California, USA, 2016, pp. 114.
    34. 34)
      • 34. Jain, A., Ghose, D.: ‘Stabilization of collective motion in synchronized, balanced and splay phase arrangements on a desired circle’. Proc. American Control Conf., Chicago, IL, USA, 2015, pp. 731736.
    35. 35)
      • 35. Summers, T.H., Akella, M.R.: ‘Coordinate standoff tracking of moving targets: control laws and information architectures’, J. Guid. Control Dyn., 2009, 32, (1), pp. 5669.
    36. 36)
      • 36. Xu, Z., Egerstedt, M., Droge, G., et al: ‘Balanced deployment of multiple robots using a modified Kuramoto model’. Proc. American Control Conf., Washington, DC, USA, 2013, pp. 61386144.
    37. 37)
      • 37. LaValle, S.M.: ‘Planning algorithms’ (Cambridge University Press, New York, 2006).
    38. 38)
      • 38. Jain, A., Ghose, D.: ‘A heterogeneous control gain approach to achieve a desired collective centroid by a formation of agents’. Proc. Indian Control Conf., Guwahati, India, 2017, pp. 321326.
    39. 39)
      • 39. Clark, J., Fierro, R.: ‘Cooperative hybrid control of robotic sensors for perimeter detection and tracking’. Proc. American Control Conf., Portland, OR, USA, 2005, pp. 35003505.
    40. 40)
      • 40. Kunz, C., Murphy, C., Camilli, R., et al: ‘Deep sea underwater robotic exploration in the ice-covered arctic ocean with AUVs’. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Nice, France, 2008, pp. 36543660.
    41. 41)
      • 41. Jain, A., Ghose, D., Menon, P.P.: ‘Achieving a desired collective centroid by a formation of agents moving in a controllable force field’. Proc. Indian Control Conf., Hyderabad, India, 2016, pp. 182187.
    42. 42)
      • 42. Jain, A., Ghose, D.: ‘Collective behavior with heterogeneous controller’. Proc. American Control Conf., Washington, DC, USA, 2013, pp. 46364641.
    43. 43)
      • 43. Anderson, B.D.O., Fidan, B., Yu, C., et al: ‘UAV formation control: theory and application’, in Blondel, V.D., Boyd, S.P., Kimura, H. (Eds.): ‘Recent advances in learning and control’ (Springer, London, 2008), pp. 1533.
    44. 44)
      • 44. Xargay, E., Dobrokhodov, V., Kaminer, I., et al: ‘Time-critical Cooperative control of multiple autonomous vehicles’, IEEE Control Syst. Mag., 2012, 32, (5), pp. 49.
    45. 45)
      • 45. Shneydor, N.A.: ‘Missile guidance and pursuit: kinematics, dynamics and control’ (Horwood Publishing Ltd., Chichester, England, U.K., 1998, 1st edn.).
    46. 46)
      • 46. Eun, Y., Bang, H.: ‘Cooperative control of multiple unmanned aerial vehicles using the potential field theory’, J. Aircr., 2006, 43, (6), pp. 18051814.
    47. 47)
      • 47. Howard, A., Matarić, M.J., Sukhatme, G.S.: ‘Mobile sensor network deployment using potential fields: a distributed, ccalable solution to the area coverage problem’. Proc. Distributed Autonomous Robotic Systems, 2002, vol. 5.
    48. 48)
      • 48. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, Upper Saddle River, NJ, 2000, 3rd edn.).
    49. 49)
      • 49. Jain, A., Ghose, D.: ‘Stabilization of collective formations with speed and controller gain heterogeneity and saturation’, J. Franklin Inst., 2017, 354, (14), pp. 59645995.
    50. 50)
      • 50. Gill, E., Sundaramoorthy, P., Bouwmeester, J., et al: ‘Formation flying within a constellation of nano-satellites: the QB50 mission’, Acta Astronaut., 2013, 82, pp. 110117.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0651
Loading

Related content

content/journals/10.1049/iet-cta.2017.0651
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address