http://iet.metastore.ingenta.com
1887

Decentralised adaptive control of a class of hidden leader–follower non-linearly parameterised coupled MASs

Decentralised adaptive control of a class of hidden leader–follower non-linearly parameterised coupled MASs

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, decentralised adaptive control is investigated for a class of discrete-time non-linear hidden leader–follower multi-agent systems (MASs). Different from the conventional leader–follower MAS, among all the agents, there exists a hidden leader that knows the desired reference trajectory, while the follower agents know neither the desired reference signal nor which is a leader agent. Each agent is affected from the history information of its own neighbours. The dynamics of each agent is described by the non-linear discrete-time auto-regressive model with unknown parameters. In order to deal with the uncertainties and non-linearity, a projection algorithm is applied to estimate the unknown parameters. Based on the certainty equivalence principle in adaptive control theory, the control for the hidden leader agent is designed by the desired reference signal, and the local control for each follower agent is designed using neighbourhood history information. Under the decentralised adaptive control, rigorous mathematical proofs are provided to show that the hidden leader agent tracks the desired reference signal, all the follower agents follow the hidden leader agent, and the closed-loop system eventually achieves strong synchronisation in the presence of strong couplings. In the end, the simulation results show the validity of this scheme.

References

    1. 1)
      • 1. Wang, X.K., Zeng, Z.W., Cong, Y.R.: ‘Multi-agent distributed coordination control: developments and directions via graph viewpoint’, Neurocomputing, 2016, 199, (26), pp. 204218.
    2. 2)
      • 2. Wang, C.Y., Ding, Z.T.: ‘H consensus control of multi-agent systems with input delay and directed topology’, Autom. Control Theory Appl., 2016, 10, (26), pp. 617624.
    3. 3)
      • 3. Song, Q., Cao, J., Yu, W.W.: ‘Second-order leader-following consensus of nonlinear multi-agent systems via pinning control’, Syst. Control Lett., 2010, 59, pp. 553562.
    4. 4)
      • 4. Ni, W., Wang, X.L., Xiong, C.: ‘Consensus controllability, observability and robust design for leader-following linear multi-agent systems’, Automatica, 2013, 49, pp. 21992205.
    5. 5)
      • 5. Ma, H.B., Lv, Y.N., Yang, C.G., et al.: ‘Decentralized adaptive filtering for multi-agent systems with uncertain couplings’, Acta Autom. Sin., 2014, 1, (1), pp. 94105.
    6. 6)
      • 6. Liu, C.L., Liu, F.: ‘Delayed-compensation algorithm for second-order leader-following consensus seeking under communication delay’, Entropy, 2015, 17, (6), pp. 37523765.
    7. 7)
      • 7. Liu, Q.Y., Wang, Z.D., He, X., et al.: ‘Event-based H consensus control of multi-agent systems with relative output feedback: the finite-horizon case’, IEEE Trans. Autom. Control, 2015, 60, (9), pp. 22532258.
    8. 8)
      • 8. Yang, C.G., Ma, H.B., Fu, M.Y.: ‘Adaptive predictive control of periodic NARMA systems using nearest-neighbor compensation’, IET Control Theory Appl., 2013, 7, pp. 116.
    9. 9)
      • 9. Nadakuditi, R., Preisig, J.C.: ‘A channel subspace post-filtering approach to adaptive least-squares estimation’, IEEE Trans. Signal Process., 2002, 52, (7), pp. 19011914.
    10. 10)
      • 10. Li, C.Y., Lam, J.: ‘Stabilization of discrete-time nonlinear uncertain systems by feedback based on LS algorithm’, SIAMJ. Control Optim., 2013, 51, pp. 11281151.
    11. 11)
      • 11. Toshio, Y.: ‘Design of an adaptive fuzzy sliding mode control for uncertain discrete-time nonlinear systems based on noisy measurements’, Int. J. Syst. Sci., 2016, 47, pp. 617630.
    12. 12)
      • 12. Li, C.Y., Chen, M.Z.Q.: ‘Simultaneous identification and stabilization of nonlinearly parameterized discrete-time systems by nonlinear least squares algorithm’, IEEE Trans. Autom. Control, 2016, 61, (7), pp. 18101823.
    13. 13)
      • 13. Sokolov, V.F.: ‘Adaptive stabilization of parameter-affine minimum-phase plants under Lipschitz uncertainty’, Automatica, 2016, 73, pp. 6470.
    14. 14)
      • 14. Guo, L., Chen, H.F.: ‘The Aström–Wittenmark self-tuning regulator revisited and ELS-based adaptive trackers’, IEEE Trans. Autom. Control, 1991, 36, (7), pp. 802812.
    15. 15)
      • 15. Guo, L.: ‘Convergence and logarithm laws of self-tuning regulators’, Automatica, 1995, 31, pp. 435450.
    16. 16)
      • 16. Niu, Y.G., Lam, J., Wang, X.Y., et al.: ‘Neural adaptive sliding mode control for a class of nonlinear neutral delay systems’, J. Dyn. Syst. Meas. Control, 2008, 130, (6), pp. 758767.
    17. 17)
      • 17. Liu, S.J., Zhang, J.F., Jiang, Z.P.: ‘Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems’, Automatica, 2007, 43, (2), pp. 238251.
    18. 18)
      • 18. Wen, C., Zhou, J.: ‘Decentralized adaptive stabilization in the presence of unknown backlash-like hysteresis’, Automatica, 2007, 43, (3), pp. 426440.
    19. 19)
      • 19. Belta, C., Kumar, V.: ‘Trajectory design for formations of robots by kinetic energy shaping’. IEEE Int. Conf. Robotics and Automation, 2002 Proc. ICRA, 2002, pp. 25932598.
    20. 20)
      • 20. Li, T., Zhang, J.F.: ‘Asymptotically optimal decentralized control for large population stochastic multiagent systems’, IEEE Trans. Autom. Control, 2008, 53, (7), pp. 16431659.
    21. 21)
      • 21. Nourian, M., Caines, P.E., Malhamé, R.P., Huang, M.Y.: ‘Mean field LQG control in leader–follower stochastic multi-agent systems: likelihood ratio based adaptation’, IEEE Trans. Autom. Control, 2012, 57, (11), pp. 28012816.
    22. 22)
      • 22. Dong, W.J., Djapic, V.: ‘Leader-following control of multiple non-holonomic systems over directed communication graphs’, Int. J. Syst. Sci., 2016, 47, (8), pp. 18771890.
    23. 23)
      • 23. Luo, X.Y., Han, N.N., Guan, X.P.: ‘Leader-following consensus protocols for formation control of multi-agent network’, Chin. J. Syst. Eng. Electron., 2011, 22, pp. 991997.
    24. 24)
      • 24. Helbing, D., Farkas, I., Vicsek, T.: ‘Simulating dynamic features of escape panic’, Nature, 2000, 47, (6803), pp. 487490.
    25. 25)
      • 25. Ma, C.Q., Li, T., Zhang, J.F.: ‘Consensus control for leader-following multi-agent systems with measurement noises’, J. Syst. Sci. Complex., 2010, 23, pp. 3549.
    26. 26)
      • 26. Wang, D., Huang, J.: ‘Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form’, Automatica, 2002, 38, pp. 13651372.
    27. 27)
      • 27. Jadbabaie, A., Lin, J., Morse, A.S.: ‘Coordination of groups of mobile autonomous agents using nearest neighbor rules’, IEEE Trans. Autom. Control, 2003, 48, (9), pp. 16751675.
    28. 28)
      • 28. Ren, W., Beard, R.W.: ‘Consensus seeking in multiagent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661.
    29. 29)
      • 29. Yu, H., Xia, X.H.: ‘Adaptive consensus of multi-agents in networks with jointly connected topologies’ (Pergamon Press, Inc., 2012).
    30. 30)
      • 30. Das, A., Lewis, F.L.: ‘Distributed adaptive control for synchronization of unknown nonlinear networked systems’, Automatica, 2010, 46, (12), pp. 20142021.
    31. 31)
      • 31. Ren, W.: ‘Multi-vehicle consensus with a time-varying reference state’, System & Control Letters, 2007, 56, (7-8), pp. 474483.
    32. 32)
      • 32. Vamvoudakis, K.G., Lewis, F.L., Hudas, G.R.: ‘Multi-agent differential graphical games: online adaptive learning solution for synchronization with optimality’ (Pergamon Press, Inc., 2012).
    33. 33)
      • 33. Yu, H., Shen, Y.J., Xia, X.H.: ‘Adaptive finite-time consensus in multi-agent networks’, Syst. Control Lett., 2013, 62, (10), pp. 880889.
    34. 34)
      • 34. Wang, W., Wen, C.Y., Huang, J.S.: ‘Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances’, Automatica, 2017, 77, pp. 133142.
    35. 35)
      • 35. Ge, S.S, Yang, C.G., Li, Y.N., et al: ‘Decentralized adaptive control of a class of discrete-time multi-agent systems for hidden leader following problem’. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2009, pp. 50655070.
    36. 36)
      • 36. Yang, C.G., Li, Y., Ge, S.S., et al: ‘Adaptive control of a class of discrete-time MIMO nonlinear systems with uncertain couplings’, Int. J. Control, 2010, 83, (10), pp. 21202133.
    37. 37)
      • 37. Chen, L.J., Narendra, K.S.: ‘Nonlinear adaptive control using neural networks and multiple models’, Automatica, 2001, 37, pp. 12451255.
    38. 38)
      • 38. Ma, H.B.: ‘Decentralized adaptive synchronization of a stochastic discrete-time multi-agent dynamic model’, SIAM J. Control Optim., 2009, 48, (2), pp. 859880.
    39. 39)
      • 39. Dong, G.H., He, H.G., Hu, D.W.: ‘A strict inequality on spectral radius of nonnegative matrices and its probabilistic proof’. Control Conf. 2008 CCC, 2008, pp. 138140.
    40. 40)
      • 40. Guo, L.: ‘Time-varying stochastic systems–stability, estimation and control’ (Jilin Science and Technology Press, 1993).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0644
Loading

Related content

content/journals/10.1049/iet-cta.2017.0644
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address