Parameterisation of a special class of saturated controllers and application to mechanical systems

Parameterisation of a special class of saturated controllers and application to mechanical systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study provides a new parameterisation for a special class of nested-saturation controllers, in which some multiplying coefficients appear before saturation functions. In an existing saturation scheme for the chain of integrators, the saturation levels and the multiplying coefficients are separately assigned in two stages, namely determined in the reduction analysis of saturated terms and the stability analysis of a reduced system. In the new parameterisation, it is in the saturation reduction analysis that the mentioned parameters are already determined. Such a convenient parameterisation is also applied to the uncertain multiple integrators and some mechanical systems.


    1. 1)
      • 1. Teel, A.R.: ‘Global stabilization and restricted tracking for multiple integrators with bounded controls’, Syst. Control Lett., 1992, 18, pp. 165171.
    2. 2)
      • 2. Sussmann, H.J., Sontag, E.D., Yang, Y.: ‘A general result on the stabilization of linear systems using bounded controls’, IEEE Trans. Autom. Control, 1994, 39, pp. 24112425.
    3. 3)
      • 3. Hu, T., Lin, Z.: ‘Control systems with actuator saturation: analysis and design’ (Birkhauser, Boston, 2001).
    4. 4)
      • 4. Lin, W., Li, X.: ‘Synthesis of upper-triangular nonlinear systems with marginally unstable free dynamics using state-dependent saturation’, Int. J. Control, 1999, 72, pp. 10781086.
    5. 5)
      • 5. Marconi, L., Isidori, A.: ‘Robust global stabilization of a class of uncertain feedforward nonlinear systems’, Syst. Control Lett., 2000, 41, pp. 281290.
    6. 6)
      • 6. Ye, X., Huang, J., Unbehauen, H.: ‘Decentralized robust stabilization for large-scale feedforward non-linear systems’, Int. J. Control, 2006, 79, pp. 15051511.
    7. 7)
      • 7. Mazenc, F., Mondie, S., Francisco, R.: ‘Global asymptotic stabilization of feedforward systems with delay in the input’, IEEE Trans. Autom. Control, 2004, 49, pp. 844850.
    8. 8)
      • 8. Sepulchre, R.: ‘Slow peaking and low-gain designs for global stabilization of nonlinear systems’, IEEE Trans. Autom. Control, 2000, 45, pp. 453461.
    9. 9)
      • 9. Ye, H.: ‘Saturated delayed controls for feedforward nonlinear systems’, IEEE Trans. Autom. Control, 2014, 59, pp. 16461653.
    10. 10)
      • 10. Zhou, B., Duan, G.R.: ‘A novel nested nonlinear feedback law for global stabilization of linear systems with bounded controls’, Int. J. Control, 2008, 81, pp. 13521363.
    11. 11)
      • 11. Zhou, B., Yang, X.: ‘Global stabilization of the multiple integrators system by delayed and bounded controls’, IEEE Trans. Autom. Control, 2016, 61, pp. 42224228.
    12. 12)
      • 12. Marchand, N., Hably, A.: ‘Global stabilization of multiple integrators with bounded controls’, Automatica, 2005, 41, pp. 21472152.
    13. 13)
      • 13. Ding, S., Zheng, W.X.: ‘Robust control of multiple integrators subject to input saturation and disturbance’, Int. J. Control, 2015, 88, pp. 844856.
    14. 14)
      • 14. Ding, S., Qian, C., Li, S.: ‘Global stabilization of a class of feedforward systems with lower-order nonlinearities’, IEEE Trans. Autom. Control, 2010, 55, pp. 691696.
    15. 15)
      • 15. Ding, S., Qian, C., Li, S., et al.: ‘Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations’, Int. J. Robust Nonlinear Control, 2011, 21, pp. 271294.
    16. 16)
      • 16. Ye, H., Wang, H., Wang, H.B.: ‘Stabilization of a PVTOL aircraft and an inertia wheel pendulum using saturation technique’, IEEE Trans. Control Syst. Technol., 2007, 15, pp. 11431150.
    17. 17)
      • 17. Ye, H., Gui, W., Jiang, Z.-P.: ‘Backstepping design for cascade systems with relaxed assumption on Lyapunov functions’, IET Control Theory Appl., 2011, 5, pp. 700712.
    18. 18)
      • 18. Tsiotras, P., Arcak, M.: ‘Low-bias control of AMB subject to voltage saturation: state- feedback and observer designs’, IEEE Trans. Control Syst. Technol., 2005, 13, pp. 262273.
    19. 19)
      • 19. Zavalario, A., Fantoni, I., Lozano, R.: ‘Global stabilization of a PVTOL aircraft model with bounded inputs’, Int. J. Control, 2003, 76, pp. 18331844.
    20. 20)
      • 20. Ailon, A.: ‘Simple tracking controllers for autonomous VTOL aircraft with bounded inputs’, IEEE Trans. Autom. Control, 2010, 55, pp. 737743.
    21. 21)
      • 21. Sepulchre, R., Jankovic, M., Kokotovic, P.V.: ‘Constructive nonlinear control’ (Springer, London, 1997).
    22. 22)
      • 22. Gubner, T., Jost, M., Adamy, J.: ‘Controller design for a class of nonlinear systems with input saturation using convex optimization’, Syst. Control Lett., 2012, 61, pp. 258265.
    23. 23)
      • 23. Ran, M., Wang, Q., Dong, C.: ‘Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control’, Automatica, 2016, 63, pp. 302310.
    24. 24)
      • 24. Wang, Q., Ran, M., Dong, C.: ‘An analysis and design method for a class of nonlinear systems with nested saturations’, Int. J. Control, 2016, 89, pp. 17111724.
    25. 25)
      • 25. Zhou, B., Lam, J.: ‘Global stabilization of linearized spacecraft rendezvous system by saturated linear feedback’, IEEE Trans. Control Syst. Technol., 2016, accepted for publication.
    26. 26)
      • 26. Berman, A., Plemmons, R.J.: ‘Nonnegative matrices in mathematical sciences’ (Academic Press, New York, 1979).
    27. 27)
      • 27. Liu, X., Teo, K.L., Xu, B.: ‘Exponential stability of impulsive higher-order Hopfield-type neural networks with time-varying delays’, IEEE Trans. Neural Netw., 2005, 16, pp. 13291339.
    28. 28)
      • 28. Xu, D., Yang, Z.: ‘Impulsive delay differential inequality and stability of neural networks’, J. Math. Anal. Appl., 2005, 305, pp. 107120.
    29. 29)
      • 29. Sastry, S.: ‘Nonlinear systems: analysis, stability and control’ (Springer, New York, 1999).
    30. 30)
      • 30. Praly, L., Ortega, R., Kaliora, G.: ‘Stabilization of nonlinear systems via forwarding mod LgV’, IEEE Trans. Autom. Control, 2001, 46, pp. 14611466.
    31. 31)
      • 31. Ortega, R., Spong, M.W., Gomez-Estern, F., et al.: ‘Stabilization of a class of underactuated mechanical system via interconnection and damping assignment’, IEEE Trans. Autom. Control, 2002, 47, pp. 12181233.
    32. 32)
      • 32. Olfati-Saber, R.: ‘Fixed point controllers and stabilization of the cart-pole system and the rotating pendulum’. IEEE Conf. Decis. Control, Arizona, USA, 1999, pp. 11741181.

Related content

This is a required field
Please enter a valid email address