http://iet.metastore.ingenta.com
1887

Linear representation of symmetric games

Linear representation of symmetric games

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Using the linear representation of symmetric group in the structure vector of finite games as its representation space, the inside structures of several kinds of symmetric games are investigated. First of all, the symmetry, described as the action of symmetric group on payoff functions, is converted to the product of permutation matrices with structure vectors of payoff functions. Second, in the light of the linear representation of the symmetric group in structure vectors, the algebraic conditions for the ordinary, weighted, renaming and name-irrelevant symmetries are obtained as the invariance under the corresponding linear representations. The semi-tensor product of matrices is a fundamental tool in this approach.

References

    1. 1)
      • 1. Papadimitriou, C.H., Roughgarden, T.: ‘Computing correlated equilibria in multi-player games’, J. Assoc. Comput. Mach., 2008, 55, (3), pp. 14:114:29.
    2. 2)
      • 2. Hofbauer, J., Sorger, G.: ‘A differential game approach to evolutionary equilibrium selection’, Int. Game Theory Rev., 2002, 04, (01), pp. 1731.
    3. 3)
      • 3. Nash, J.: ‘Non-cooperative games’, Ann. Math., 1951, 54, (2), pp. 286295.
    4. 4)
      • 4. Alós.Ferrer, C., Kuzmics, C.: ‘Hidden symmetries and focal points’, J. Econ. Theory, 2013, 148, (1), pp. 226258.
    5. 5)
      • 5. Kubena, A.A., Franek, P.: ‘Symmetries of quasi-values’, in Vöcking, B. (ED.): ‘Algorithmic Game Theory’, SAGT, Lecture Notes in Computer Science, 8146, (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013), pp. 159170.
    6. 6)
      • 6. Cao, Z., Yang, X.: ‘Symmetric games revisited’. SSRN, 2015.
    7. 7)
      • 7. Peleg, B., Rosenmüller, J., Sudhölter, P., et al.: ‘The canonical extensive form of a game form: symmetries’, in Alkan, A., Aliprantis, C.D., Yannelis, N.C. (EDs.) ‘Current Trends in Economics, Studies in Economic Theory’, 8, (Springer Berlin Heidelberg, Berlin, Heidelberg, 1999), pp. 367387.
    8. 8)
      • 8. Dixon, J.D., Mortimer, B.: ‘Permutation groups, vol. 163 (Springer Science & Business Media, 1996).
    9. 9)
      • 9. Serre, J.P.: ‘Linear representations of finite groups’ (Springer-Verlag, New York, 1977).
    10. 10)
      • 10. Cheng, D., Qi, H., Zhao, Y.: ‘An introduction to semi-tensor product of matrices and its applications’ (World Scientific, Singapore, 2012).
    11. 11)
      • 11. Cheng, D., Qi, H., Li, Z.: ‘Analysis and control of Boolean networks: a semi-tensor product approach’ (Springer, London, 2011).
    12. 12)
      • 12. Laschov, D., Margaliot, M., Even, G.: ‘Observability of boolean networks: a graph-theoretic approach’, Automatica, 2013, 49, (8), pp. 23512362.
    13. 13)
      • 13. Fornasini, E., Valcher, M.E.: ‘Observability, reconstructibility and state observers of boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (6), pp. 13901401.
    14. 14)
      • 14. Li, R., Yang, M., Chu, T.: ‘State feedback stabilization for boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (7), pp. 18531857.
    15. 15)
      • 15. Wang, Y., Zhang, C., Liu, Z.: ‘A matrix approach to graph maximum stable set and coloring problems with application to multi-agent systems’, Automatica, 2012, 48, (7), pp. 12271236.
    16. 16)
      • 16. Zou, Y., Zhu, J.: ‘Kalman decomposition for boolean control networks’, Automatica, 2015, 54, pp. 6571.
    17. 17)
      • 17. Zhong, J., Lu, J., Huang, C., et al.: ‘Finding graph minimum stable set and core via semi-tensor product approach’, Neurocomputing, 2016, 174, Part B, pp. 588596.
    18. 18)
      • 18. Guo, P., Wang, Y., Li, H.: ‘Algebraic formulation and strategy optimization for a class of evolutionary networked games via semi-tensor product method’, Automatica, 2013, 49, (11), pp. 33843389.
    19. 19)
      • 19. Cheng, D.: ‘On finite potential games’, Automatica, 2014, 50, (7), pp. 17931801.
    20. 20)
      • 20. Cheng, D., He, F., Qi, H., et al.: ‘Modeling, analysis and control of networked evolutionary games’, IEEE Trans. Autom. Control, 2015, 60, (9), pp. 24022415.
    21. 21)
      • 21. Liu, X., Zhu, J.: ‘On potential equations of finite games’, Automatica, 2016, 68, pp. 245253.
    22. 22)
      • 22. Candogan, O., Menache, I., Ozdaglar, A., et al.: ‘Flows and decompositions of games: harmonic and potential games’, Math. Oper. Res., 2011, 36, (3), pp. 474503.
    23. 23)
      • 23. Cheng, D., Liu, T., Zhang, K., et al.: ‘On decomposed subspaces of finite games’, IEEE Trans. Autom. Control, 2016, 61, (11), pp. 36513656.
    24. 24)
      • 24. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, Cambridge, 1986).
    25. 25)
      • 25. Khatri, C.G., Rao, C.R.: ‘Solutions to some functional equations and their applications to characterization of probability distributions’, Sankhyā Indian J. Stat. A, 1961-20021968, 30, (2), pp. 167180,.
    26. 26)
      • 26. Varadarajan, V.S.: ‘Lie groups, lie algebras, and their representations’ (Springer-Verlag, New York, 1974).
    27. 27)
      • 27. Jacobson, N.: ‘Basic algebra I’ (W.H. Freeman and Company, San Francisco, 1985, 2nd edn.).
    28. 28)
      • 28. Gopalakrishnan, R., Marden, J.R., Wierman, A.: ‘An architectural view of game theoretic control’, SIGMETRICS Perform. Eval. Rev., 2011, 38, (3), pp. 3136.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0620
Loading

Related content

content/journals/10.1049/iet-cta.2017.0620
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address