http://iet.metastore.ingenta.com
1887

Petri type 2 fuzzy neural networks approximator for adaptive control of uncertain non-linear systems

Petri type 2 fuzzy neural networks approximator for adaptive control of uncertain non-linear systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors developed a novel universal approximator by the integration of Petri networks into type 2 fuzzy neural networks (T2FNN). T2FNN involve large number of rules, which result in heavy computational burden and great computation time. By incorporating Petri layers to optimise the number of rules; these two drawbacks could be very well overcome. Moreover, a new inference type 2 fuzzy system was developed to reduce the time consumed in the iterative K–M inference procedure, and to increase the approximation accuracy. The proposed inference engine is based on the use of an adaptive modulation of the upper and the lower outputs. The Petri type 2 fuzzy neural networks (PT2FNN) approximator was used to approximate the adaptive control for uncertain single-input single-output non-linear system. The stability of the closed-loop system was proven and demonstrated using the Lyaponov approach. Comparative studies of the proposed PT2FNN approximator with type 1 fuzzy neural network and T2FNN were performed. The performances of PT2FNN over the two types of the fuzzy system were shown on the inverted pendulum system.

References

    1. 1)
      • 1. Yang-Yin, L., Shih-Hui, L., Jyh-Yeong, C., , et al: ‘Simplified Interval type 2 fuzzy neural networks’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 24, (5), pp. 111117.
    2. 2)
      • 2. Lu, C.H.: ‘Wavelet fuzzy neural networks for identification and predictive control of dynamics systems’, IEEE Trans. Ind. Electron., 2011, 58, pp. 30463058.
    3. 3)
      • 3. Xinju, Z., Shuzhen, Y.: ‘Fuzzy stochastic Petri nets and analysis of the reliability of multi-state systems’, IET Softw., 2015, 9, (3), pp. 8393.
    4. 4)
      • 4. Erkan, K., Erdal, K., Mojtaba, A.K.: ‘Identification of nonlinear dynamic systems using type 2 fuzzy neural networks – a novel learning algorithm and a comparative study’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 17161724.
    5. 5)
      • 5. Rahib, H., Abiyev, O.K.: ‘Fuzzy wavelet neural networks for identification and control of dynamic plants – a novel structure and a comparative study’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 31333140.
    6. 6)
      • 6. Mostafa, G., Seyyed, K.H.-S., Hassan, M., , et al: ‘Direct adaptive general type-2 fuzzy control for a class of uncertain non-linear systems’, IET Sci. Meas. Technol., 2014, 8, (6), pp. 518527.
    7. 7)
      • 7. Fouad, Y., Bouhali, O., Hamerlain, M., , et al: ‘Observer-based adaptive fuzzy backstepping tracking control of quadrotor unmanned aerial vehicle powered by Li-ion battery’, J. Intel. Robot. Syst., 2016, 184, (1), pp. 179197.
    8. 8)
      • 8. Maryam, S.k., Farid, S., Maryam, Z.: ‘Design of adaptive fuzzy wavelet neural sliding mode controller for uncertain nonlinear systems’, ISA Trans., 2013, 52, (3), pp. 342350.
    9. 9)
      • 9. Shigen, G., Hairong, D., Bin, N., , et al: ‘Neural adaptive control for uncertain nonlinear system with input saturation: state transformation based output feedback’, Neurocomputing, 2015, 159, pp. 117125.
    10. 10)
      • 10. Xing-Gang, Y., Christopher, E.: ‘Adaptive sliding-mode-observer-based fault reconstruction for nonlinear systems with parametric uncertainties’, Neurocomputing, 2008, 55, (11), pp. 117125.
    11. 11)
      • 11. Wuxi, S.: ‘Observer-based direct adaptive fuzzy control for single-input single-output non-linear systems with unknown gain sign’, IET Control Theory Appl., 2015, 9, (17), pp. 25062513.
    12. 12)
      • 12. Boudjedir, H., Bouhali, O., Rizoug, N.: ‘Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle’, Adv. Robot., 2014, 28, (17), pp. 11511164.
    13. 13)
      • 13. Feng, Z., Shuzhi, S.G., Fangwen, T., , et al: ‘Adaptive neural network control for active suspension system with actuator saturation’, IET Control Theory Appl., 2016, 10, (14), pp. 16961705.
    14. 14)
      • 14. Jos, H., Perez, C., Isaac, C., , et al: ‘Identification and control of class of non-linear systems with non-symmetric dead zone using recurrent neural networks’, IET Control Theory Appl., 2013, 8, (3), pp. 183192.
    15. 15)
      • 15. Michael, N., Suiyang, K., Abbas, K., , et al: ‘Adaptive fuzzy multi-surface sliding control of multiple-input and multiple-output autonomous flight systems’, IET Control Theory Appl., 2015, 9, (4), pp. 587597.
    16. 16)
      • 16. Oscar, C., Juan, R.C., Patricia, M.: ‘Application of interval type 2 fuzzy neural networks in non-linear identification and time series prediction’, Methodol. Appl., 2014, 18, (6), pp. 12131224.
    17. 17)
      • 17. Chih-min, L., Ang-bung, T., Chun-fei, H., , et al: ‘Adaptive control for MIMO uncertain nonlinear systems using recurrent wavelet neural networks’, Int. J. Neural Syst., 2012, 22, (1), pp. 117128.
    18. 18)
      • 18. Mehrnoosh, D., Maryam, Z., Farid, S.: ‘Fuzzy wavelet neural network with an accelerated hybrid learning algorithm’, IEEE Trans. Fuzzy Syst., 2012, 20, (3), pp. 463470.
    19. 19)
      • 19. Abiyev, R.H.: ‘Controller based of fuzzy wavelet neural network for control of technological processes’. IEEE Int. CISMA Conf., 2005.
    20. 20)
      • 20. Rongming, Z.: ‘A new Petri net model and stability analysis of fuzzy control system’. Advanced Mechatronic Systems Conf., 2012.
    21. 21)
      • 21. Ying, H.-b., Zhou, H., Duan, J.-A.: ‘Adaptive control using interval type 2 fuzzy logic for uncertain nonlinear systems’, J. Cent. South Univ., 2011, 15, (3), pp. 760766.
    22. 22)
      • 22. Lohani, A.K., Goel, N.K., Bhatia, K.K.: ‘Comparative study of neural network, fuzzy logic and linear transfer function techniques in daily rainfall-runoff modelling under different input domains’, Hydrol. Process., 2011, 25, (1), pp. 175193.
    23. 23)
      • 23. Idris, M.F., Dahlan, Z.A.: ‘The performance of two mothers wavelets in function approximation’, J. Math. Res., 2009, 1, (2), pp. 1119.
    24. 24)
      • 24. Xie, T.T., Yu, H., Wilamowski, B.M.: ‘Comparison of fuzzy and neural systems for implementation of nonlinear control Surfaces’, Comput. Syst. Interact., 2012, 99, (11), pp. 313324.
    25. 25)
      • 25. Sung-Kwun, O., Han-Jong, J., Witold, P.: ‘A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization’, Expert Syst. Appl., 2011, 38, pp. 1121711229.
    26. 26)
      • 26. Narinder, S., Bharti, P.: ‘Comparison of neural network and fuzzy logic control for nonlinear model of two link rigid manipulator’, Int. J. Control Autom., 2014, 7, (2), pp. 417428.
    27. 27)
      • 27. Meriem, B., Essounbouli, N., Hamzaoui, A., , et al: ‘Adaptive type 2 fuzzy sliding mode controller for SISO, nonlinear systems subject to actuator faults’, Int. J. Autom. Comput., 2013, 10, (4), pp. 335342.
    28. 28)
      • 28. Erdal, K., Reinaldo, M.: ‘Type-2 fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions’, Trans. Mechatron., 2016, 22, (1), pp. 339348.
    29. 29)
      • 29. Dongrui, W.: ‘Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons’, IEEE Trans. Fuzzy Syst., 2013, 21, (1), pp. 8099.
    30. 30)
      • 30. Feilong, L.: ‘An efficient centroid type-reduction strategy for general type-2 fuzzy logic system’, J. King Saud Univ., Comput. Inf. Sci., 2008, 178, (9), pp. 22242236.
    31. 31)
      • 31. Chien, Y.-H., Wang, W.-Y.: ‘Online hybrid intelligent tracking control for uncertain nonlinear dynamical systems’, Adv. Mechatron. Syst., 2012, 55, (11), pp. 229239.
    32. 32)
      • 32. Ran, H., Jinhui, Z., Xu, Z.: ‘Adaptive tracking control of uncertain switched non-linear systems with application to aircraft wing rock’, IET Control Theory Appl., 2016, 10, (15), pp. 17551762.
    33. 33)
      • 33. Sanner, R., Slotine, J.J.: ‘Gaussian networks for direct adaptive control’, IEEE Trans. Neural Netw., 1992, 6, (6), pp. 837864.
    34. 34)
      • 34. Yong-Hua, L.: ‘Saturated robust adaptive control for uncertain non-linear systems using a new approximate model’, IET Control Theory Appl., 2017, 11, (6), pp. 870876.
    35. 35)
      • 35. Xiong, Y., Derong, L., Yuzhu, H.: ‘Neural-network-based online optimal control for uncertain non-linear continuous-time systems with control constraints’, IET Control Theory Appl., 2013, 7, (17), pp. 20372047.
    36. 36)
      • 36. Hansheng, W., Mingcong, D.: ‘Robust adaptive control scheme for uncertain non-linear model reference adaptive control systems with time-varying delays’, IET Control Theory Appl., 2015, 9, (8), pp. 11811189.
    37. 37)
      • 37. Zhou, H.-b., Duan, J-a., Zhou, Z-y.: ‘A simplified adaptive interval Type-2 fuzzy control in practical industrial application’, J.Cent. South Univ., 2014, 21, (7), pp. 26932700.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0610
Loading

Related content

content/journals/10.1049/iet-cta.2017.0610
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address