access icon free Robust fixed-order dynamic output feedback controller design for fractional-order systems

This study deals with designing a robust fixed-order dynamic output feedback controller for uncertain fractional-order linear time-invariant systems by means of linear matrix inequalities (LMIs). The authors’ purpose is to design a low-order controller that stabilises the fractional-order linear system in the presence of model uncertainties. No limiting constraint on the state space matrices of the uncertain system is assumed in the design procedure. Furthermore, adopting the most complete model of linear controller, with direct feedthrough parameter, does not disturb the LMI-based approach of developing robust stabilising control. Eventually, the authors illustrate the advantages of the proposed method by some examples and their numerical simulation.

Inspec keywords: uncertain systems; state-space methods; control system synthesis; linear matrix inequalities; robust control; linear systems; feedback

Other keywords: robust stabilising control; robust fixed-order dynamic output feedback controller design; uncertain fractional-order linear time-invariant systems; LMI-based approach; linear matrix inequalities; state space matrices

Subjects: Stability in control theory; Linear algebra (numerical analysis); Control system analysis and synthesis methods; Linear control systems

References

    1. 1)
      • 14. Zheng, S.: ‘Robust stability of fractional order system with general interval uncertainties’, Syst. Control Lett., 2017, 99, pp. 18.
    2. 2)
      • 17. Ibrir, S., Bettayeb, M.: ‘New sufficient conditions for observer-based control of fractional-order uncertain systems’, Automatica, 2015, 59, pp. 216223.
    3. 3)
      • 29. Löfberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. IEEE Int. Symp. on Computer Aided Control Systems Design’ 2004 IEEE Int. Symp. on Computer Aided Control Systems Design, 2004, pp. 284289.
    4. 4)
      • 15. Badri, V., Tavazoei, M.S.: ‘On tuning fractional order [proportional–derivative] controllers for a class of fractional order systems’, Automatica, 2013, 49, (7), pp. 22972301.
    5. 5)
      • 18. Lan, Y.-H., Huang, H.-X., Zhou, Y.: ‘Observer-based robust control of a (1 ≤ a < 2) fractional-order uncertain systems: a linear matrix inequality approach’, IET Control Theory Amp Appl., 2012, 6, (2), pp. 229234.
    6. 6)
      • 7. Podlubny, I.: ‘Fractional-order systems and PI/sup/spl lambda//D/sup/spl mu//-controllers’, IEEE Trans. Autom. Control, 1999, 44, (1), pp. 208214.
    7. 7)
      • 22. Haddad, W.M., Bernstein, D.S.: ‘Robust stabilization with positive real uncertainty: beyond the small gain theorem’, Syst. Control Lett., 1991, 17, (3), pp. 191208.
    8. 8)
      • 30. Sturm, J.F.: ‘Using SeDuMi 1.02, A matlab toolbox for optimization over symmetric cones’, Optim. Methods Softw., 1999, 11, (1–4), pp. 625653.
    9. 9)
      • 27. Sabatier, J., Moze, M., Farges, C.: ‘LMI stability conditions for fractional order systems’, Comput. Math. Appl., 2010, 59, (5), pp. 15941609.
    10. 10)
      • 31. Higham, D.J., Higham, N.J.: ‘MATLAB guide’ (SIAM, Philadelphia, 2005, 2nd edn.).
    11. 11)
      • 28. Zhang, F.(Ed.): ‘The schur complement and its applications’ (Springer-Verlag, New York, 2005).
    12. 12)
      • 16. Lan, Y.-H., Zhou, Y.: ‘Non-fragile observer-based robust control for a class of fractional-order nonlinear systems’, Syst. Control Lett., 2013, 62, (12), pp. 11431150.
    13. 13)
      • 12. Li, C., Wang, J.: ‘Robust stability and stabilization of fractional order interval systems with coupling relationships: the 0 < α<1 case’, J. Frankl. Inst., 2012, 349, (7), pp. 24062419.
    14. 14)
      • 9. Lu, J.-G., Chen, G.: ‘Robust stability and stabilization of fractional-order interval systems: an LMI approach’, IEEE Trans. Autom. Control, 2009, 54, (6), pp. 12941299.
    15. 15)
      • 10. Ma, Y., Lu, J., Chen, W.: ‘Robust stability and stabilization of fractional order linear systems with positive real uncertainty’, ISA Trans.., 2014, 53, (2), pp. 199209.
    16. 16)
      • 23. Haddad, W.M., Bernstein, D.S.: ‘Explicit construction of quadratic lyapunov functions for the small gain, positivity, circle, and popov theorems and their application to robust stability. Part I: continuous-time theory’, Int. J. Robust Nonlinear Control, 1993, 3, (4), pp. 313339.
    17. 17)
      • 3. Badri, V., Tavazoei, M.S.: ‘Achievable performance region for a fractional-order proportional and derivative motion controller’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 71717180.
    18. 18)
      • 8. Jin, Y., Chen, Y.Q., Xue, D.: ‘Time-constant robust analysis of a fractional order [proportional derivative] controller’, IET Control Theory Appl., 2011, 5, (1), pp. 164172.
    19. 19)
      • 11. Khiabani, A.G., Babazadeh, R.: ‘Design of robust fractional-order lead–lag controller for uncertain systems’, IET Control Theory Amp Appl., 2016, 10, (18), pp. 24472455.
    20. 20)
      • 2. Badri, V., Tavazoei, M.S.: ‘Some analytical results on tuning fractional-order [proportional-integral] controllers for fractional-order systems’, IEEE Trans. Control Syst. Technol., 2016, 24, (3), pp. 10591066.
    21. 21)
      • 5. Sabatier, J., Aoun, M., Oustaloup, A., et al: ‘Fractional system identification for lead acid battery state of charge estimation’, Signal Process.., 2006, 86, (10), pp. 26452657.
    22. 22)
      • 26. Farges, C., Moze, M., Sabatier, J.: ‘Pseudo-state feedback stabilization of commensurate fractional order systems’, Automatica, 2010, 46, (10), pp. 17301734.
    23. 23)
      • 4. Badri, V., Tavazoei, M.S.: ‘Fractional order control of thermal systems: achievability of frequency-domain requirements’, Nonlinear Dyn.., 2014, 80, (4), pp. 17731783.
    24. 24)
      • 6. Gabano, J.D., Poinot, T., Kanoun, H.: ‘Identification of a thermal system using continuous linear parameter-varying fractional modelling’, IET Control Theory Appl., 2011, 5, (7), pp. 889899.
    25. 25)
      • 20. Park, J.H.: ‘Synchronization of cellular neural networks of neutral type via dynamic feedback controller’, Chaos Solitons Fractals, 2009, 42, (3), pp. 12991304.
    26. 26)
      • 19. Badri, P., Amini, A., Sojoodi, M.: ‘Robust fixed-order dynamic output feedback controller design for nonlinear uncertain suspension system’, Mech. Syst. Signal Process, 2016, 80, pp. 137151.
    27. 27)
      • 21. Garcia, G., Daafouz, J., Bernussou, J.: ‘Output feedback disk pole assignment for systems with positive real uncertainty’, IEEE Trans. Autom. Control, 1996, 41, (9), pp. 13851391.
    28. 28)
      • 24. Shim, D.: ‘Quadratic stability in the circle theorem or positivity theorem’, Int. J. Robust Nonlinear Control, 1996, 6, (8), pp. 781788.
    29. 29)
      • 25. Podlubny, I.: ‘Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications’ (Academic Press, California, 1998).
    30. 30)
      • 13. Xing, S.Y., Lu, J.G.: ‘Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters: an LMI approach’, Chaos Solitons Fractals, 2009, 42, (2), pp. 11631169.
    31. 31)
      • 1. Chen, W., Dai, H., Song, Y., et al: ‘Convex lyapunov functions for stability analysis of fractional order systems’, IET Control Theory Amp Appl., 2017, 11, pp. 10701074.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0608
Loading

Related content

content/journals/10.1049/iet-cta.2017.0608
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading