http://iet.metastore.ingenta.com
1887

Sub-optimal extremum seeking control for static maps

Sub-optimal extremum seeking control for static maps

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors address the problem of reaching a given percentage of an optimal cost, so as to guarantee a known reserve with respect to the optimum. This reserve aims to counteract fast changes in the operating conditions. The authors assume that the analytical expression of the cost function is not available. To tackle this problem, they propose a novel extremum seeking scheme, the sub-optimal extremum seeking, that is able to keep a given margin with respect to the estimated optimal cost. Stability properties of the control scheme are proved and the effectiveness of the approach is validated in simulation.

References

    1. 1)
      • 1. de Vyver, J.V., de Kooning, J.D., Vandoorn, T.L., et al: ‘Comparison of wind turbine power control strategies to provide power reserves’. 2016 IEEE Int. Energy Conf. (ENERGYCON), 2016, pp. 16.
    2. 2)
      • 2. Yingcheng, X., Nengling, T.: ‘Review of contribution to frequency control through variable speed wind turbine’, Renew. Energy, 2011, 36, (6), pp. 16711677.
    3. 3)
      • 3. Yang, W., Court, R., Jiang, J.: ‘Wind turbine condition monitoring by the approach of scada data analysis’, Renew. Energy, 2013, 53, pp. 365376.
    4. 4)
      • 4. Leyva, R., Alonso, C., Queinnec, I., et al: ‘Mppt of photovoltaic systems using extremum-seeking control’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (1), pp. 249258.
    5. 5)
      • 5. Brunton, S.L., Rowley, C.W., Kulkarni, S.R., et al: ‘Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control’, IEEE Trans. Power Electron., 2010, 25, (10), pp. 25312540.
    6. 6)
      • 6. Yildiz, Y., Annaswamy, A.M., Yanakiev, D., et al: ‘Spark-ignition-engine idle speed control: an adaptive control approach’, IEEE Trans. Control Syst. Technol., 2011, 19, (5), pp. 9901002.
    7. 7)
      • 7. Hellström, E., Lee, D., Jiang, L., et al: ‘On-board calibration of spark timing by extremum seeking for flex-fuel engines’, IEEE Trans. Control Syst. Technol., 2013, 21, (6), pp. 22732279.
    8. 8)
      • 8. Ariyur, K.B., Krstic, M.: ‘Real time optimization by extremum seeking control’ (John Wiley & Sons, Inc., New York, NY, USA, 2003).
    9. 9)
      • 9. Leblanc, M.: ‘Sur l’électrification des chemins de fer au moyen de courants alternatifs de fréquence élevée', in Revue Générale de l' électricité, 1922.
    10. 10)
      • 10. Krstić, M., Wang, H.H.: ‘Stability of extremum seeking feedback for general nonlinear dynamic systems’, Automatica, 2000, 36, (4), pp. 595601.
    11. 11)
      • 11. Tan, Y., Nesic, D., Mareels, I.: ‘On non-local stability properties of extremum seeking control’, Automatica, 2006, 42, (6), pp. 889903.
    12. 12)
      • 12. Dürr, H.B., Stanković, M.S., Ebenbauer, C., et al: ‘Lie bracket approximation of extremum seeking systems’, Automatica, 2013, 49, (6), pp. 15381552.
    13. 13)
      • 13. Ghaffari, A., Krstic, M., Seshagiri, S.: ‘Power optimization and control in wind energy conversion systems using extremum seeking’, IEEE Trans. Control Syst. Technol., 2014, 22, (5), pp. 16841695.
    14. 14)
      • 14. Kitazono, S., Sugihira, S., Ohmori, H.: ‘Starting speed control of si engine based on extremum seeking control’. 17th IFAC World Congress, 2008, pp. 10361041.
    15. 15)
      • 15. Ghaffari, A., Seshagiri, S., Krstic, M.: ‘Power optimization for photovoltaic micro-converters using multivariable gradient-based extremum seeking’. 2012 American Control Conf., 2012, pp. 33833388.
    16. 16)
      • 16. Johnson, M.C., Brunton, S.L., Kundtz, N.B., et al: ‘Extremum-seeking control of the beam pattern of a reconfigurable holographic metamaterial antenna’, J. Opt. Soc. Am. A, 2016, 33, (1), pp. 5968.
    17. 17)
      • 17. Tan, Y., Moase, W., Manzie, C., et al: ‘Extremum seeking from 1922 to 2010’. Proc. 29th Chinese Control Conf., 2010, pp. 1426.
    18. 18)
      • 18. Guay, M., Dochain, D.: ‘A proportional-integral extremum-seeking controller design technique’, Automatica, 2017, 77, pp. 6167.
    19. 19)
      • 19. Chioua, M., Srinivasan, B., Guay, M., et al: ‘Performance improvement of extremum seeking control using recursive least square estimation with forgetting factor’. 11th IFAC Symp. Dynamics and Control of Process Systems, Including Biosystems, 2016, pp. 424429.
    20. 20)
      • 20. Moase, W.H., Manzie, C., Brear, M.J.: ‘Newton-like extremum-seeking for the control of thermoacoustic instability’, IEEE Trans. Autom. Control, 2010, 55, (9), pp. 20942105.
    21. 21)
      • 21. Ghaffari, A., Krstic, M., Nesic, D.: ‘Multivariable newton-based extremum seeking’. 50th IEEE Conf. Decision and Control and European Control Conf., 2011, pp. 44364441.
    22. 22)
      • 22. Oliveira, T.R., Krstic, M.: ‘Newton-based extremum seeking under actuator and sensor delays’. 12th IFAC Workshop on Time Delay Systems, 2015, pp. 304309.
    23. 23)
      • 23. Ariyur, K.B., Krstić, M.: ‘Slope seeking: a generalization of extremum seeking’, Int. J. Adapt. Control Signal Process., 2004, 18, (1), pp. 122.
    24. 24)
      • 24. Labar, C., Garone, E., Kinnaert, M.: ‘Sub-optimal extremum seeking control’. 20th IFAC World Congress, 2017, pp. 77627768.
    25. 25)
      • 25. Bhat, S.P., Cowlagi, R.: ‘Semi-global practical stability of periodic time-varying systems via averaging: A lyapunov approach’. 45th IEEE Conf. Decision & Control, 2006, pp. 361365.
    26. 26)
      • 26. Slootweg, J.G., de Haan, S.H., Polinder, H., et al: ‘General model for representing variable speed wind turbines in power system dynamics simulations’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 144151.
    27. 27)
      • 27. Estep, D.: ‘The taylor polynomial’, in ‘Practical analysis in one variable’ (Springer New York, New York, NY, 2002), pp. 525541.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0605
Loading

Related content

content/journals/10.1049/iet-cta.2017.0605
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address