http://iet.metastore.ingenta.com
1887

Consensus of second-order multi-agents with actuator saturation and asynchronous time-delays

Consensus of second-order multi-agents with actuator saturation and asynchronous time-delays

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents the consensus of a saturated second-order multi-agent system with non-switching dynamics that can be represented by a directed graph. The system is affected by data processing (input delay) and communication time-delays that are assumed to be asynchronous. The agents have saturation non-linearities, each of them is approximated into separate linear and non-linear elements. Non-linear elements are represented by describing functions. Describing functions and stability of linear elements are used to estimate the existence of limit cycles in the system with multiple control laws. Stability analysis of the linear element is performed using Lyapunov–Krasovskii functions and frequency domain analysis. A comparison of pros and cons of both the analyses with respect to time-delay ranges, applicability and computation complexity is presented. Simulation and corresponding hardware implementation results are demonstrated to support theoretical results.

References

    1. 1)
      • 1. Jadbabaie, A., Lin, J., Morse, A.S.: ‘Coordination of groups of mobile autonomous agents using nearest neighbor rules’, IEEE Trans. Autom. Control, 2003, 48, (6), pp. 9881001.
    2. 2)
      • 2. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    3. 3)
      • 3. Vicsek, T., Czirók, A., Ben-Jacob, E., et al.: ‘Novel type of phase transition in a system of self-driven particles’, Phys. Rev. Lett., 1995, 75, pp. 12261229.
    4. 4)
      • 4. Cao, Y., Yu, W., Ren, W., et al.: ‘An overview of recent progress in the study of distributed multi-agent coordination’, IEEE Trans. Ind. Inf., 2013, 9, (1), pp. 427438.
    5. 5)
      • 5. Wang, X., Zeng, Z., Cong, Y.: ‘Multi-agent distributed coordination control: developments and directions via graph viewpoint’, Neurocomputing, 2016, 199, pp. 204218.
    6. 6)
      • 6. Xiao, F., Wang, L.: ‘Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays’, IEEE Trans. Autom. Control, 2008, 53, (8), pp. 18041816.
    7. 7)
      • 7. Ren, W.: ‘On consensus algorithms for double-integrator dynamics’, IEEE Trans. Autom. Control, 2008, 53, (6), pp. 15031509.
    8. 8)
      • 8. Hu, J., Lin, Y.S.: ‘Consensus control for multi-agent systems with double-integrator dynamics and time delays’, IET Control Theory Appl., 2010, 4, (1), pp. 109118.
    9. 9)
      • 9. Münz, U., Papachristodoulou, A., Allgöwer, F.: ‘Delay robustness in consensus problems’, Automatica, 2010, 46, (8), pp. 12521265.
    10. 10)
      • 10. Meng, Z., Ren, W., Cao, Y., et al.: ‘Leaderless and leader–following consensus with communication and input delays under a directed network topology’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2011, 41, (1), pp. 7588.
    11. 11)
      • 11. Zhang, W., Liu, J., Zeng, D., et al.: ‘Consensus analysis of continuous-time second-order multi-agent systems with nonuniform time-delays and switching topologies’, Asian J. Control, 2013, 15, (5), pp. 15161523.
    12. 12)
      • 12. Meng, X., Meng, Z., Chen, T., et al.: ‘Pulse width modulation for multi-agent systems’, Automatica, 2016, 70, pp. 173178.
    13. 13)
      • 13. Yu, W., Chen, G., Cao, M., et al.: ‘Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2010, 40, (3), pp. 881891.
    14. 14)
      • 14. Liu, K., Xie, G., Ren, W., et al.: ‘Consensus for multi-agent systems with inherent nonlinear dynamics under directed topologies’, Syst. Control Lett., 2013, 62, (2), pp. 152162.
    15. 15)
      • 15. Li, J., Guan, Z.H., Chen, G.: ‘Multi-consensus of nonlinearly networked multi-agent systems’, Asian J. Control, 2015, 17, (1), pp. 157164.
    16. 16)
      • 16. Li, Y., Xiang, J., Wei, W.: ‘Consensus problems for linear time-invariant multi-agent systems with saturation constraints’, IET Control Theory Appl., 2011, 5, (6), pp. 823829.
    17. 17)
      • 17. Meng, Z., Zhao, Z., Lin, Z.: ‘On global leader-following consensus of identical linear dynamic systems subject to actuator saturation’, Syst. Control Lett., 2013, 62, (2), pp. 132142.
    18. 18)
      • 18. Wei, A., Hu, X., Wang, Y.: ‘Tracking control of leader-follower multi-agent systems subject to actuator saturation’, IEEE/CAA J. Autom. Sin., 2014, 1, (1), pp. 8491.
    19. 19)
      • 19. Chu, H., Yuan, J., Zhang, W.: ‘Observer-based adaptive consensus tracking for linear multi-agent systems with input saturation’, IET Control Theory Appl., 2015, 9, (14), pp. 21242131.
    20. 20)
      • 20. Su, H., Chen, M.Z.Q.: ‘Multi-agent containment control with input saturation on switching topologies’, IET Control Theory Appl., 2015, 9, (3), pp. 399409.
    21. 21)
      • 21. Cui, G., Xu, S., Lewis, F.L., et al.: ‘Distributed consensus tracking for non-linear multi-agent systems with input saturation: a command filtered backstepping approach’, IET Control Theory Appl., 2016, 10, (5), pp. 509516.
    22. 22)
      • 22. You, X., Hua, C., Peng, D., et al.: ‘Leader following consensus for multi-agent systems subject to actuator saturation with switching topologies and time-varying delays’, IET Control Theory Appl., 2016, 10, (2), pp. 144150.
    23. 23)
      • 23. Sun, Y.G., Wang, L., Xie, G.: ‘Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays’, Syst. Control Lett., 2008, 57, (2), pp. 175183.
    24. 24)
      • 24. Lin, P., Jia, Y.: ‘Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies’, IEEE Trans. Autom. Control, 2010, 55, (3), pp. 778784.
    25. 25)
      • 25. Slotine, J.J.E., Li, W.: ‘Describing function analysis’, ‘Applied nonlinear control’ (Englewood Cliffs, Prentice Hall, N.J., 1991), pp. 157190.
    26. 26)
      • 26. Lin, P., Jia, Y.: ‘Average consensus in networks of multi-agents with both switching topology and coupling time-delay’, Physica A, Stat. Mech. Appl., 2008, 387, (1), pp. 303313.
    27. 27)
      • 27. Sturm, J.F.: ‘Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones’, in ‘Optimization Methods and Software’, vol. 11-12, 1999, pp. 625653.Version 1.05 available from http://fewcal.kub.nl/sturm.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0578
Loading

Related content

content/journals/10.1049/iet-cta.2017.0578
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address