access icon free Fault-tolerant formation control of non-linear multi-vehicle systems with application to quadrotors

This study is concerned with the fault-tolerant (FT) formation control problem with a guaranteed performance for non-linear multi-vehicle systems subject to actuator faults. The authors consider a practical situation: the information transferred between adjacent vehicles is disturbed and each vehicle is interfered by stochastic disturbance and measurement noise. For each vehicle, a decentralised state observer and an adaptive fault estimator are designed based on which a novel cooperative FT control (FTC) protocol is proposed to drive all the vehicles to the desired formation configuration. Taking the system noise into consideration, the error dynamics are modelled by stochastic differential equations, whose properties are used for designing and analysing the Lyapunov function in the framework of calculus. It is proved that the formation error system is mean-square asymptotically stable with a prescribed attenuation level in an sense by the proposed FTC scheme. The observer, estimator and controller gains can be obtained by solving algebraic Riccati inequalities. Finally, the theoretical results are illustrated by simulations and real experiments.

Inspec keywords: stochastic processes; helicopters; nonlinear control systems; Riccati equations; fault tolerant control; differential equations; multi-robot systems; position control; Lyapunov methods; asymptotic stability; observers

Other keywords: Lyapunov function design; quadrotors; controller gain; cooperative FT control protocol; Lyapunov function analysis; measurement noise; mean-square asymptotic stability; stochastic disturbance; algebraic Riccati inequalities; estimator gain; nonlinear multivehicle systems; observer gain; formation configuration; system noise; Ito stochastic differential equations; decentralised state observer; H∞ performance; Ito calculus framework; error dynamics; adjacent vehicles; adaptive fault estimator; actuator faults; formation error system; fault-tolerant formation control

Subjects: Spatial variables control; Aerospace control; Nonlinear control systems; Mobile robots; Stability in control theory; Algebra; Simulation, modelling and identification; Other topics in statistics; Mathematical analysis

References

    1. 1)
      • 8. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: ‘Adaptive control of quadrotor UAVs: a design trade study with flight evaluations’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 14001406.
    2. 2)
      • 17. Xiao, B., Hu, Q.L., Zhang, Y.M.: ‘Fault-tolerant tacking control of spacecraft with attitude-only measurement under actuator failures’, J. Guid. Control Dyn., 2014, 37, (3), pp. 838849.
    3. 3)
      • 26. Zhang, X.D.: ‘Decentralized fault detection for a class of large-scale nonlinear uncertain systems.’ Proc. ACC, June 2010, pp. 56505655..
    4. 4)
      • 28. Kazerooni, E.S., Khorasani, K.: ‘Team consensus for a network of unmanned vehicles in presence of actuator faults’, IEEE Trans. Control Syst. Technol., 2010, 18, (5), pp. 11551161.
    5. 5)
      • 46. Schmitt, L., Fichter, W.: ‘Collision-avoidance framework for small fixed-wing unmanned aerial vehicles’, J. Guid. Control Dyn., 2014, 37, (4), pp. 13231328.
    6. 6)
      • 21. Shen, Y., Luo, H., Ding, S.X.: ‘Real-time implementation of fault-tolerant control systems with performance optimization’, IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 24022411.
    7. 7)
      • 48. Lewis, F.L., Xie, L.H., Popa, D.: ‘Optimal and robust estimation’ (Taylor and Francis, London, UK, 2011), pp. 1321.
    8. 8)
      • 5. Beard, R.W., Lawton, J., Hadaegh, F.Y.: ‘A coordination architecture for spacecraft formation control’, IEEE Trans. Control Syst. Technol., 2001, 9, (6), pp. 777790.
    9. 9)
      • 54. Wang, J.A., Xin, M.: ‘Integrated optimal formation control of multiple unmanned aerial vehicles’, IEEE Trans. Control Syst. Technol., 2013, 21, (5), pp. 17311744.
    10. 10)
      • 41. Karimoddini, A., Lin, H., Chen, B.M., et al.: ‘Hybrid three-dimensional formation control for unmanned helicopters’, Automatica, 2013, 49, (2), pp. 424433.
    11. 11)
      • 9. Li, Z.K., Ren, W., Liu, X.D., et al.: ‘Distributed consensus of linear multi-agent systems with adaptive dynamic protocols’, Automatica, 2013, 49, (7), pp. 19861995.
    12. 12)
      • 36. Zhang, Z.Q., Zhang, J., Wang, Y.J.: ‘Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 39233931.
    13. 13)
      • 47. Hu, J., Feng, G.: ‘Distributed tracking control of leader–follower multi-agent systems under noisy measurement’, Automatica, 2010, 46, (8), pp. 13821387.
    14. 14)
      • 30. Khalili, M., Zhang, X.D., Cao, Y.K., et al: ‘Distributed adaptive fault-tolerant control of nonlinear uncertain second-order multi-agent systems. ’ Proc. CDC, December 2015, pp. 44804485..
    15. 15)
      • 23. Hu, Q.L., Xiao, B., Zhang, Y.M.: ‘Fault-tolerant attitude control for spacecraft under loss of actuator effectiveness’, J. Guid. Control Dyn., 2011, 34, (3), pp. 927932.
    16. 16)
      • 37. Oh, K.K., Park, M.C., Ahn, H.S.: ‘A survey of multi-agent formation control’, Automatica, 2015, 53, (1), pp. 424440.
    17. 17)
      • 49. Cecconi, J.: ‘Stochastic differential equations’ (Springer-Verlag, Berlin and Heidelberg, Germany, 2011), pp. 1321.
    18. 18)
      • 6. Zhang, K.W., Michael, A.D.: ‘Adaptive attitude synchronization control of spacecraft formation with adaptive synchronization gains’, J. Guid. Control Dyn., 2014, 37, (5), pp. 16441651.
    19. 19)
      • 16. Keliris, C., Polycarpou, M.M., Parisini, T.: ‘A robust nonlinear observer-based approach for distributed fault detection of input-output interconnected systems’, Automatica, 2015, 53, (1), pp. 408415.
    20. 20)
      • 25. Ding, S.X.: ‘Model-based fault diagnosis techniques and design schemes’ (Springer-Verlag, Berlin and Heidelberg, Germany, 2008), pp. 1321.
    21. 21)
      • 38. Xi, J.X., Shi, Z.Y., Zhong, Y.S.: ‘Output consensus for high-order linear time-invariant swarm systems’, Int. J. Control, 2012, 85, (4), pp. 350360.
    22. 22)
      • 20. Li, H.Y., Gao, H.J., Shi, P., et al.: ‘Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach’, Automatica, 2014, 50, (7), pp. 18251834.
    23. 23)
      • 10. Ren, W., Atkins, E.: ‘Distributed multi-vehicle coordinated control via local information exchange’, Int. J. Robust Nonlinear Control, 2007, 17, (10), pp. 10021033.
    24. 24)
      • 24. Chen, J., Patton, R.J.: ‘Robust model-based fault diagnosis techniques for dynamic systems’ (Springer-Verlag, New York, USA, 1999), pp. 7585.
    25. 25)
      • 3. Su, H.S., Wang, X.F., Lin, Z.L.: ‘Flocking of multi-agents with a virtual leader’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 293307.
    26. 26)
      • 15. Chen, G., Song, Y.D.: ‘Fault-tolerant output synchronisation control of multi-vehicle systems’, IET Control Theory Appl., 2014, 8, (8), pp. 574584.
    27. 27)
      • 2. Weitz, L.A., Hurtado, J.E., Sinclair, A.J.: ‘Decentralized cooperative control design for multi-vehicle formations’, J. Guid. Control Dyn., 2008, 31, (4), pp. 969979.
    28. 28)
      • 53. Wang, X.H., Yadav, V., Balakrishnan, S.N.: ‘Cooperative UAV formation flying with obstacle/collision avoidance’, IEEE Trans. Control Syst. Technol., 2007, 15, (4), pp. 672679.
    29. 29)
      • 12. Wang, Z.D., Ding, D.R., Dong, H.L., et al.: ‘H-infinity consensus control for multi-agent systems with missing measurements: the finite-horizon case’, Syst. Control Lett., 2013, 62, (10), pp. 827836.
    30. 30)
      • 29. Li, J.Z.: ‘Fault tolerant consensus of multi-agent systems with linear dynamics’, Math. Probl. Eng., 2013, 1, (1), pp. 465471.
    31. 31)
      • 50. Mounir, Z., Filatova, D.V.: ‘Stochastic differential equations and processes’ (Springer-Verlag, Berlin and Heidelberg, Germany, 2012), pp. 1321.
    32. 32)
      • 34. Yang, H., Staroswiecki, M., Jiang, B., et al.: ‘Fault tolerant cooperative control for a class of nonlinear multi-agent systems’, Syst. Control Lett., 2011, 60, (4), pp. 271277.
    33. 33)
      • 39. Dong, X.W., Yu, B.C., Shi, Z.Y., et al.: ‘Time-varying formation control for unmanned aerial vehicles: theories and applications’, IEEE Trans. Control Syst. Technol., 2015, 23, (1), pp. 340348.
    34. 34)
      • 51. Dong, X.W., Zhou, Y., Zhang, R., et al.: ‘Time-varying formation control for unmanned aerial vehicles with switching interaction topologies’, Control Eng. Pract., 2016, 46, 2636.
    35. 35)
      • 11. Wang, P., Ding, B.C.: ‘Distributed RHC for tracking and formation of nonholonomic multi-vehicle systems’, IEEE Trans. Autom. Control, 2014, 59, (6), pp. 14391453.
    36. 36)
      • 33. Dong, X., Zhou, Y., Ren, Z., et al.: ‘Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 50145024.
    37. 37)
      • 44. Davoodi, M.R., Khorasani, K., Talebi, H.A., et al.: ‘Distributed fault detection and isolation filter design for a network of heterogeneous multiagent systems’, IEEE Trans. Control Syst. Technol., 2014, 22, (3), pp. 10611069.
    38. 38)
      • 40. Bayezit, I., Fidan, B.: ‘Distributed cohesive motion control of flight vehicle formations’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 57635772.
    39. 39)
      • 14. Chen, F.Y., Zheng, W., Tao, G., et al.: ‘Robust adaptive fault-tolerant control for hypersonic flight vehicles with multiple faults’, J. Aerosp. Eng., 2015, 28, (4), pp. 110.
    40. 40)
      • 32. Hua, Y., Dong, X., Li, Q., et al.: ‘Distributed fault-tolerant time-varying formation control for high-order linear multi-agent systems with actuator failures,’ ISA Trans., 2017.
    41. 41)
      • 13. Shi, J.T., He, X., Wang, Z.D., et al.: ‘Iterative consensus for a class of second-order multi-agent systems’, J. Intell. Robot. Syst., 2014, 73, (1–4), pp. 655664.
    42. 42)
      • 19. Jiang, B., Gao, Z.F., Shi, P., et al.: ‘Adaptive fault-tolerant tracking control of near-space vehicle using Takagi–Sugeno fuzzy models’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 10001007.
    43. 43)
      • 22. Gao, Z.W.: ‘Fault estimation and fault-tolerant control for discrete-time dynamic systems’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 38743884.
    44. 44)
      • 1. Ren, W., Beard, R., Atkins, E.: ‘Information consensus in multi-vehicle cooperative control’, IEEE Control Syst., 2007, 27, (2), pp. 7182.
    45. 45)
      • 45. Xie, G.M., Wang, L.: ‘Moving formation convergence of a group of mobile robots via decentralised information feedback’, Int. J. Syst. Sci., 2009, 40, (1), pp. 10191027.
    46. 46)
      • 7. Ghommam, J., Mahmoud, M.S., Sard, M.: ‘Robust cooperative control for a group of mobile robots with quantized information exchange’, J. Franklin Inst., 2013, 350, (8), pp. 22912321.
    47. 47)
      • 42. Cai, G.W., Chen, B.M., Lee, T.H.: ‘Unmanned rotorcraft systems’ (Springer-Verlag, London, England, 2011), pp. 356365.
    48. 48)
      • 4. Zhu, R., Sun, D., Zhou, Z.Y.: ‘Cooperation strategy of unmanned air vehicles for multi-target interception’, J. Guid. Control Dyn., 2005, 28, (5), pp. 10681072.
    49. 49)
      • 31. Xiang, Y., Liu, Z.X., Zhang, Y.M.: ‘Fault-tolerant formation control of multiple UAVs in the presence of actuator faults’, Int. J. Robust Nonlinear Control, 2016, 26, (12), pp. 26682685.
    50. 50)
      • 43. Ren, B.B., Ge, S.Z.S., Chen, C., et al.: ‘Modeling, control and coordination of helicopter systems’ (Springer-Verlag, New York, USA, 2012), pp. 244256.
    51. 51)
      • 18. Zhang, X.D., Parisini, T., Polycarpou, M.M.: ‘Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach’, IEEE Trans. Autom. Control, 2004, 49, (8), pp. 12591274.
    52. 52)
      • 27. Wen, G.H., Duan, Z.S., Li, Z.K., et al.: ‘Stochastic consensus in directed networks of agents with non-linear dynamics and repairable actuator failures’, IET Control Theory Appl., 2012, 6, (11), pp. 15831593.
    53. 53)
      • 55. Johnson, W.: ‘Rotorcraft aeromechanics’ (Cambridge University Press, Cambridge, England, 2013), pp. 1321.
    54. 54)
      • 35. Shen, Q. K., Jiang, B., Shi, P., et al: ‘Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multi-agent systems with time-varying actuator faults’, IEEE Trans. Fuzzy Syst., 2014, 22, (3), pp. 494504.
    55. 55)
      • 52. Tayebi, A., McGilvray, S.: ‘Attitude stabilization of a VTOL quadrotor aircraft’, IEEE Trans. Control Syst. Technol., 2006, 14, (3), pp. 562571.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0569
Loading

Related content

content/journals/10.1049/iet-cta.2017.0569
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading