http://iet.metastore.ingenta.com
1887

Fault-tolerant formation control of non-linear multi-vehicle systems with application to quadrotors

Fault-tolerant formation control of non-linear multi-vehicle systems with application to quadrotors

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is concerned with the fault-tolerant (FT) formation control problem with a guaranteed performance for non-linear multi-vehicle systems subject to actuator faults. The authors consider a practical situation: the information transferred between adjacent vehicles is disturbed and each vehicle is interfered by stochastic disturbance and measurement noise. For each vehicle, a decentralised state observer and an adaptive fault estimator are designed based on which a novel cooperative FT control (FTC) protocol is proposed to drive all the vehicles to the desired formation configuration. Taking the system noise into consideration, the error dynamics are modelled by stochastic differential equations, whose properties are used for designing and analysing the Lyapunov function in the framework of calculus. It is proved that the formation error system is mean-square asymptotically stable with a prescribed attenuation level in an sense by the proposed FTC scheme. The observer, estimator and controller gains can be obtained by solving algebraic Riccati inequalities. Finally, the theoretical results are illustrated by simulations and real experiments.

References

    1. 1)
      • 1. Ren, W., Beard, R., Atkins, E.: ‘Information consensus in multi-vehicle cooperative control’, IEEE Control Syst., 2007, 27, (2), pp. 7182.
    2. 2)
      • 2. Weitz, L.A., Hurtado, J.E., Sinclair, A.J.: ‘Decentralized cooperative control design for multi-vehicle formations’, J. Guid. Control Dyn., 2008, 31, (4), pp. 969979.
    3. 3)
      • 3. Su, H.S., Wang, X.F., Lin, Z.L.: ‘Flocking of multi-agents with a virtual leader’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 293307.
    4. 4)
      • 4. Zhu, R., Sun, D., Zhou, Z.Y.: ‘Cooperation strategy of unmanned air vehicles for multi-target interception’, J. Guid. Control Dyn., 2005, 28, (5), pp. 10681072.
    5. 5)
      • 5. Beard, R.W., Lawton, J., Hadaegh, F.Y.: ‘A coordination architecture for spacecraft formation control’, IEEE Trans. Control Syst. Technol., 2001, 9, (6), pp. 777790.
    6. 6)
      • 6. Zhang, K.W., Michael, A.D.: ‘Adaptive attitude synchronization control of spacecraft formation with adaptive synchronization gains’, J. Guid. Control Dyn., 2014, 37, (5), pp. 16441651.
    7. 7)
      • 7. Ghommam, J., Mahmoud, M.S., Sard, M.: ‘Robust cooperative control for a group of mobile robots with quantized information exchange’, J. Franklin Inst., 2013, 350, (8), pp. 22912321.
    8. 8)
      • 8. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: ‘Adaptive control of quadrotor UAVs: a design trade study with flight evaluations’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 14001406.
    9. 9)
      • 9. Li, Z.K., Ren, W., Liu, X.D., et al.: ‘Distributed consensus of linear multi-agent systems with adaptive dynamic protocols’, Automatica, 2013, 49, (7), pp. 19861995.
    10. 10)
      • 10. Ren, W., Atkins, E.: ‘Distributed multi-vehicle coordinated control via local information exchange’, Int. J. Robust Nonlinear Control, 2007, 17, (10), pp. 10021033.
    11. 11)
      • 11. Wang, P., Ding, B.C.: ‘Distributed RHC for tracking and formation of nonholonomic multi-vehicle systems’, IEEE Trans. Autom. Control, 2014, 59, (6), pp. 14391453.
    12. 12)
      • 12. Wang, Z.D., Ding, D.R., Dong, H.L., et al.: ‘H-infinity consensus control for multi-agent systems with missing measurements: the finite-horizon case’, Syst. Control Lett., 2013, 62, (10), pp. 827836.
    13. 13)
      • 13. Shi, J.T., He, X., Wang, Z.D., et al.: ‘Iterative consensus for a class of second-order multi-agent systems’, J. Intell. Robot. Syst., 2014, 73, (1–4), pp. 655664.
    14. 14)
      • 14. Chen, F.Y., Zheng, W., Tao, G., et al.: ‘Robust adaptive fault-tolerant control for hypersonic flight vehicles with multiple faults’, J. Aerosp. Eng., 2015, 28, (4), pp. 110.
    15. 15)
      • 15. Chen, G., Song, Y.D.: ‘Fault-tolerant output synchronisation control of multi-vehicle systems’, IET Control Theory Appl., 2014, 8, (8), pp. 574584.
    16. 16)
      • 16. Keliris, C., Polycarpou, M.M., Parisini, T.: ‘A robust nonlinear observer-based approach for distributed fault detection of input-output interconnected systems’, Automatica, 2015, 53, (1), pp. 408415.
    17. 17)
      • 17. Xiao, B., Hu, Q.L., Zhang, Y.M.: ‘Fault-tolerant tacking control of spacecraft with attitude-only measurement under actuator failures’, J. Guid. Control Dyn., 2014, 37, (3), pp. 838849.
    18. 18)
      • 18. Zhang, X.D., Parisini, T., Polycarpou, M.M.: ‘Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach’, IEEE Trans. Autom. Control, 2004, 49, (8), pp. 12591274.
    19. 19)
      • 19. Jiang, B., Gao, Z.F., Shi, P., et al.: ‘Adaptive fault-tolerant tracking control of near-space vehicle using Takagi–Sugeno fuzzy models’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 10001007.
    20. 20)
      • 20. Li, H.Y., Gao, H.J., Shi, P., et al.: ‘Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach’, Automatica, 2014, 50, (7), pp. 18251834.
    21. 21)
      • 21. Shen, Y., Luo, H., Ding, S.X.: ‘Real-time implementation of fault-tolerant control systems with performance optimization’, IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 24022411.
    22. 22)
      • 22. Gao, Z.W.: ‘Fault estimation and fault-tolerant control for discrete-time dynamic systems’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 38743884.
    23. 23)
      • 23. Hu, Q.L., Xiao, B., Zhang, Y.M.: ‘Fault-tolerant attitude control for spacecraft under loss of actuator effectiveness’, J. Guid. Control Dyn., 2011, 34, (3), pp. 927932.
    24. 24)
      • 24. Chen, J., Patton, R.J.: ‘Robust model-based fault diagnosis techniques for dynamic systems’ (Springer-Verlag, New York, USA, 1999), pp. 7585.
    25. 25)
      • 25. Ding, S.X.: ‘Model-based fault diagnosis techniques and design schemes’ (Springer-Verlag, Berlin and Heidelberg, Germany, 2008), pp. 1321.
    26. 26)
      • 26. Zhang, X.D.: ‘Decentralized fault detection for a class of large-scale nonlinear uncertain systems.’ Proc. ACC, June 2010, pp. 56505655..
    27. 27)
      • 27. Wen, G.H., Duan, Z.S., Li, Z.K., et al.: ‘Stochastic consensus in directed networks of agents with non-linear dynamics and repairable actuator failures’, IET Control Theory Appl., 2012, 6, (11), pp. 15831593.
    28. 28)
      • 28. Kazerooni, E.S., Khorasani, K.: ‘Team consensus for a network of unmanned vehicles in presence of actuator faults’, IEEE Trans. Control Syst. Technol., 2010, 18, (5), pp. 11551161.
    29. 29)
      • 29. Li, J.Z.: ‘Fault tolerant consensus of multi-agent systems with linear dynamics’, Math. Probl. Eng., 2013, 1, (1), pp. 465471.
    30. 30)
      • 30. Khalili, M., Zhang, X.D., Cao, Y.K., et al: ‘Distributed adaptive fault-tolerant control of nonlinear uncertain second-order multi-agent systems. ’ Proc. CDC, December 2015, pp. 44804485..
    31. 31)
      • 31. Xiang, Y., Liu, Z.X., Zhang, Y.M.: ‘Fault-tolerant formation control of multiple UAVs in the presence of actuator faults’, Int. J. Robust Nonlinear Control, 2016, 26, (12), pp. 26682685.
    32. 32)
      • 32. Hua, Y., Dong, X., Li, Q., et al.: ‘Distributed fault-tolerant time-varying formation control for high-order linear multi-agent systems with actuator failures,’ ISA Trans., 2017.
    33. 33)
      • 33. Dong, X., Zhou, Y., Ren, Z., et al.: ‘Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 50145024.
    34. 34)
      • 34. Yang, H., Staroswiecki, M., Jiang, B., et al.: ‘Fault tolerant cooperative control for a class of nonlinear multi-agent systems’, Syst. Control Lett., 2011, 60, (4), pp. 271277.
    35. 35)
      • 35. Shen, Q. K., Jiang, B., Shi, P., et al: ‘Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multi-agent systems with time-varying actuator faults’, IEEE Trans. Fuzzy Syst., 2014, 22, (3), pp. 494504.
    36. 36)
      • 36. Zhang, Z.Q., Zhang, J., Wang, Y.J.: ‘Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 39233931.
    37. 37)
      • 37. Oh, K.K., Park, M.C., Ahn, H.S.: ‘A survey of multi-agent formation control’, Automatica, 2015, 53, (1), pp. 424440.
    38. 38)
      • 38. Xi, J.X., Shi, Z.Y., Zhong, Y.S.: ‘Output consensus for high-order linear time-invariant swarm systems’, Int. J. Control, 2012, 85, (4), pp. 350360.
    39. 39)
      • 39. Dong, X.W., Yu, B.C., Shi, Z.Y., et al.: ‘Time-varying formation control for unmanned aerial vehicles: theories and applications’, IEEE Trans. Control Syst. Technol., 2015, 23, (1), pp. 340348.
    40. 40)
      • 40. Bayezit, I., Fidan, B.: ‘Distributed cohesive motion control of flight vehicle formations’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 57635772.
    41. 41)
      • 41. Karimoddini, A., Lin, H., Chen, B.M., et al.: ‘Hybrid three-dimensional formation control for unmanned helicopters’, Automatica, 2013, 49, (2), pp. 424433.
    42. 42)
      • 42. Cai, G.W., Chen, B.M., Lee, T.H.: ‘Unmanned rotorcraft systems’ (Springer-Verlag, London, England, 2011), pp. 356365.
    43. 43)
      • 43. Ren, B.B., Ge, S.Z.S., Chen, C., et al.: ‘Modeling, control and coordination of helicopter systems’ (Springer-Verlag, New York, USA, 2012), pp. 244256.
    44. 44)
      • 44. Davoodi, M.R., Khorasani, K., Talebi, H.A., et al.: ‘Distributed fault detection and isolation filter design for a network of heterogeneous multiagent systems’, IEEE Trans. Control Syst. Technol., 2014, 22, (3), pp. 10611069.
    45. 45)
      • 45. Xie, G.M., Wang, L.: ‘Moving formation convergence of a group of mobile robots via decentralised information feedback’, Int. J. Syst. Sci., 2009, 40, (1), pp. 10191027.
    46. 46)
      • 46. Schmitt, L., Fichter, W.: ‘Collision-avoidance framework for small fixed-wing unmanned aerial vehicles’, J. Guid. Control Dyn., 2014, 37, (4), pp. 13231328.
    47. 47)
      • 47. Hu, J., Feng, G.: ‘Distributed tracking control of leader–follower multi-agent systems under noisy measurement’, Automatica, 2010, 46, (8), pp. 13821387.
    48. 48)
      • 48. Lewis, F.L., Xie, L.H., Popa, D.: ‘Optimal and robust estimation’ (Taylor and Francis, London, UK, 2011), pp. 1321.
    49. 49)
      • 49. Cecconi, J.: ‘Stochastic differential equations’ (Springer-Verlag, Berlin and Heidelberg, Germany, 2011), pp. 1321.
    50. 50)
      • 50. Mounir, Z., Filatova, D.V.: ‘Stochastic differential equations and processes’ (Springer-Verlag, Berlin and Heidelberg, Germany, 2012), pp. 1321.
    51. 51)
      • 51. Dong, X.W., Zhou, Y., Zhang, R., et al.: ‘Time-varying formation control for unmanned aerial vehicles with switching interaction topologies’, Control Eng. Pract., 2016, 46, 2636.
    52. 52)
      • 52. Tayebi, A., McGilvray, S.: ‘Attitude stabilization of a VTOL quadrotor aircraft’, IEEE Trans. Control Syst. Technol., 2006, 14, (3), pp. 562571.
    53. 53)
      • 53. Wang, X.H., Yadav, V., Balakrishnan, S.N.: ‘Cooperative UAV formation flying with obstacle/collision avoidance’, IEEE Trans. Control Syst. Technol., 2007, 15, (4), pp. 672679.
    54. 54)
      • 54. Wang, J.A., Xin, M.: ‘Integrated optimal formation control of multiple unmanned aerial vehicles’, IEEE Trans. Control Syst. Technol., 2013, 21, (5), pp. 17311744.
    55. 55)
      • 55. Johnson, W.: ‘Rotorcraft aeromechanics’ (Cambridge University Press, Cambridge, England, 2013), pp. 1321.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0569
Loading

Related content

content/journals/10.1049/iet-cta.2017.0569
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address