Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Boundary output feedback control of a flexible spacecraft system with input constraint

This study is concerned with vibration control of a flexible spacecraft system in the presence of disturbances and input saturation constraint. The dynamics of the spacecraft consisting of a rigid body and two flexible appendages is presented by the coupled partial differential equations and ordinary differential equations. The first boundary state feedback control is adopted when the spacecraft system states can be measured. The second boundary output feedback control is employed when there exists the unmeasurable state in the proposed control law. A high-gain observer is developed to estimate the unmeasurable system state, two auxiliary systems are designed to prevent the presence of input saturation from destroying the system performance and two disturbance observers are established to handle the unknown boundary disturbances. The well-posedness and stability of the spacecraft system are proved. Simulation results are presented to demonstrate the effectiveness of the proposed control schemes.

References

    1. 1)
      • 16. He, W., He, X.Y., Ge, S.S.: ‘Vibration control of flexible marine riser systems with input saturation’, IEEE/ASME Trans. Mechatronics, 2016, 21, (1), pp. 254265.
    2. 2)
      • 7. Wu, S., Wen, S.H.: ‘Robust H output feedback control for attitude stabilization of a flexible spacecraft’, Nonlinear Dyn., 2016, 84, (1), pp. 405412.
    3. 3)
      • 30. He, W., Zhang, S., Ge, S.S.: ‘Robust adaptive control of a thruster assisted position mooring system’, Automatica, 2014, 50, (7), pp. 18431851.
    4. 4)
      • 17. Yang, K.J., Hong, K.S., Matsuno, F.: ‘Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension’, J. Sound Vib., 2004, 273, (4), pp. 10071029.
    5. 5)
      • 25. Wen, K., Guo, B.Z.: ‘Stabilisation of unstable cascaded heat partial differential equation system subject to boundary disturbance’, IET Control Theory Appl., 2016, 10, (9), pp. 10271039.
    6. 6)
      • 4. Hu, Q.: ‘Input shaping and variable structure control for simultaneous precision positioning and vibration reduction of flexible spacecraft with saturation compensation’, J. Sound Vib., 2008, 318, (1-2), pp. 1835.
    7. 7)
      • 28. Behtash, S.: ‘Robust output tracking for non-linear systems’, Int. J. Control, 1990, 51, (6), pp. 13811407.
    8. 8)
      • 10. He, W., Ge, S.S.: ‘Cooperative control of a nonuniform gantry crane with constrained tension’, Automatica, 2016, 66, (4), pp. 146154.
    9. 9)
      • 20. Xu, G.Q.: ‘Stabilization of string system with linear boundary feedback’, Nonlinear Anal. Hybrid Syst., 2007, 1, (3), pp. 383397.
    10. 10)
      • 12. Liu, Y., Zhao, Z.J., Guo, F.: ‘Adaptive Lyapunov-based backstepping control for an axially moving system with input saturation’, IET Control Theory Appl., 2016, 10, (16), pp. 20832092.
    11. 11)
      • 27. Jin, F.F, Guo, B.Z.: ‘Lyapunov approach to output feedback stabilization for the Euler-Bernoulli beam equation with boundary input disturbance’, Automatica, 2015, 52, pp. 95102.
    12. 12)
      • 22. Hu, Q., Ma, G.: ‘Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver’, Aerosp. Sci. Technol., 2005, 9, (4), pp. 307317.
    13. 13)
      • 5. Azadi, M., Eghtesad, M., Fazelzadeh, S.A.: ‘Dynamics and control of a smart flexible satellite moving in an orbit’, Multibody Syst. Dyn., 2015, 35, (1), pp. 123.
    14. 14)
      • 1. Hu, Q.L.: ‘Neural network-based adaptive attitude tracking control for flexible spacecraft with unknown high-frequency gain’, Int. J. Adapt. Control Signal Process., 2009, 24, (6), pp. 477489.
    15. 15)
      • 6. Xiao, B., Hu, Q., Zhang, Y.: ‘Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation’, IEEE Trans. Control Syst. Technol., 2012, 20, (6), pp. 16051612.
    16. 16)
      • 29. Wu, H.N., Wang, J.W., Li, H.X.: ‘Design of distributed H fuzzy controllers with constraint for nonlinear hyperbolic PDE systems’, Automatica, 2012, 48, (10), pp. 25352543.
    17. 17)
      • 15. Do, K.D., Pan, J.: ‘Boundary control of transverse motion of marine risers with actuator dynamics’, J. Sound Vib., 2008, 318, (4), pp. 768791.
    18. 18)
      • 23. Cheng, M.B., Radisavljevic, V., Su, W.C.: ‘Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties’, Automatica, 2011, 47, (2), pp. 381387.
    19. 19)
      • 18. Tucsnak, M., Weiss, G.: ‘Observation and control for operator semigroups’ (Birkhäuser, Basel, 2009).
    20. 20)
      • 9. Meirovitch, L., Baruh, H.: ‘On the problem of observation spillover in self-adjoint distributed-parameter systems’, J. Optim. Theory Appl., 1983, 39, (2), pp. 269291.
    21. 21)
      • 13. Guo, F., Liu, Y., Luo, F.: ‘Adaptive stabilisation of a flexible riser by using the Lyapunov-based barrier backstepping technique’, IET Control Theory Appl., 2017, 11, (14), pp. 22522260.
    22. 22)
      • 2. Xin, M., Pan, H.: ‘Integrated nonlinear optimal control of spacecraft in proximity operations’, Int. J. Control, 2010, 83, (2), pp. 347363.
    23. 23)
      • 14. He, W., Zhang, S., Ge, S.S.: ‘Adaptive control of a flexible crane system with the boundary output constraint’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 41264133.
    24. 24)
      • 3. Li, H., Yang, W., Shi, Y.: ‘Continuous-time model predictive control of under-actuated spacecraft with bounded control torques’, Automatica, 2017, 75, pp. 144153.
    25. 25)
      • 11. Guo, B.Z., Zhou, H.C.: ‘The active disturbance rejection control to stabilization for multidimensional wave equation with boundary control matched disturbance’, IEEE Trans. Autom. Control., 2015, 60, (1), pp. 143157.
    26. 26)
      • 24. Karagiannis, D., Radisavljevic, V.: ‘Sliding mode boundary control for vibration suppression in a pinned-pinned Euler-Bernoulli beam with disturbances’, J. Vib. Control., 2016, Doi: 1077546316658578.
    27. 27)
      • 21. He, W., Ge, S.S.: ‘Dynamic modeling and vibration control of a flexible satellite’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (2), pp. 14221431.
    28. 28)
      • 8. Balas, M.J.: ‘Active control of flexible systems’, J. Optim. Theory Appl., 1978, 25, pp. 415436.
    29. 29)
      • 26. Guo, B.Z., Kang, W.: ‘Lyapunov approach to the boundary stabilisation of a beam equation with boundary disturbance’, Int. J. Control, 2014, 87, (5), pp. 925939.
    30. 30)
      • 19. Guo, B.Z., Xu, C.Z.: ‘The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation’, IEEE Trans. Autom. Control, 2007, 52, (2), pp. 371377.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0567
Loading

Related content

content/journals/10.1049/iet-cta.2017.0567
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address