access icon free Identification of continuous-time switched linear systems from low-rate sampled data

This study is about the identification problem of continuous-time switched linear systems from low-rate sampled data. The main problem in the identification of such systems, when the sampling rate is low, is that the sampling instances do not coincide with the switching times. Therefore, some of the measured samples are generated from more than one subsystem. This problem was first observed during the sampling of a step-up DC–DC converter at the rate of 100 kHz. The current study aims to explain the theoretical aspects of the identification problem of continuous-time switched linear systems, and to offer a new method for estimating of subsystem parameters plus the switching times. The proposed method accurately determines the switching times which might be between two consecutive sampling instances. The results obtained from the proposed method are used to determine the switching times and parameters of an experimental DC–DC boost converter.

Inspec keywords: DC-DC power convertors; sampled data systems; linear systems; parameter estimation; continuous time systems

Other keywords: frequency 100.0 kHz; consecutive sampling instances; subsystem parameter estimation; continuous-time switched linear system identification; low-rate sampled data; sampling rate; switching times; step-up DC–DC boost converter

Subjects: Linear control systems; Discrete control systems; Power electronics, supply and supervisory circuits; Simulation, modelling and identification

References

    1. 1)
      • 2. Vaezi, M., Izadian, A.: ‘Piecewise affine system identification of a hydraulic wind power transfer system’, IEEE Trans. Control Syst. Technol., 2015, 23, (6), pp. 20772086.
    2. 2)
      • 21. Vidal, R.: ‘Recursive identification of switched arx systems’, Automatica, 2008, 44, (9), pp. 22742287.
    3. 3)
      • 23. Verdult, V., Verhaegen, M.: ‘Subspace identification of piecewise linear systems’. Decision and Control, 2004. CDC. 43rd IEEE Conf., Bahamas, vol. 4, 2004, pp. 38383843.
    4. 4)
      • 31. Ogata, K.: ‘Discrete-time control systems’, vol. 2, (Prentice Hall Englewood Cliffs, NJ, 1995).
    5. 5)
      • 22. Bako, L., Mercere, G., Lecoeuche, S.: ‘On-line structured subspace identification with application to switched linear systems’, Int. J. Control, 2009, 82, (8), pp. 14961515.
    6. 6)
      • 17. Wang, J., Chen, T.: ‘Parameter estimation of periodically switched linear systems’, IET Control Theory Applic., 2012, 6, (6), pp. 768775.
    7. 7)
      • 35. Dieci, L., Morini, B., Papini, A.: ‘Computational techniques for real logarithms of matrices’, SIAM J. Matrix Anal. Appl., 1996, 17, (3), pp. 570593.
    8. 8)
      • 7. Geyer, T., Papafotiou, G., Morari, M.: ‘Hybrid model predictive control of the step-down dc–dc converter’, IEEE Trans. Control Syst. Technol., 2008, 16, (6), pp. 11121124.
    9. 9)
      • 34. Dieci, L.: ‘Considerations on computing real logarithms of matrices, hamiltonian logarithms, and skew-symmetric logarithms’, Linear Algebr. Appl., 1996, 244, pp. 3554.
    10. 10)
      • 5. Niu, B., Ahn, C.K., Li, H., et al: ‘Adaptive control for stochastic switched nonlower triangular nonlinear systems and its application to a one-link manipulator’, IEEE Trans. Syst. Man Cybern. Syst., 2017.
    11. 11)
      • 19. Lauer, F., Bloch, G., Vidal, R.: ‘A continuous optimization framework for hybrid system identification’, Automatica, 2011, 47, (3), pp. 608613.
    12. 12)
      • 12. Ferrari Trecate, G., Muselli, M., Liberati, D., et al: ‘A clustering technique for the identification of piecewise affine systems’, Automatica, 2003, 39, (2), pp. 205217.
    13. 13)
      • 11. Roll, J., Bemporad, A., Ljung, L.: ‘Identification of piecewise affine systems via mixed-integer programming’, Automatica, 2004, 40, (1), pp. 3750.
    14. 14)
      • 30. Sun, Z., Ge, S.S.: ‘Switched linear systems: control and design’ (Springer, London, 2005).
    15. 15)
      • 29. Sun, Z., Ge, S.S.: ‘Stability theory of switched dynamical systems’ (Springer-Verlag, 2011).
    16. 16)
      • 32. Culver, W.J.: ‘On the existence and uniqueness of the real logarithm of a matrix’, Proc. Am. Math. Soc., 1966, 17, (5), pp. 11461151.
    17. 17)
      • 3. Vaezi, M., Khayyer, P., Izadian, A.: ‘Optimum adaptive piecewise linearization: an estimation approach in wind power’, IEEE Trans. Control Syst. Technol., 201625, (3), pp. 808817.
    18. 18)
      • 13. Ozay, N., Sznaier, M., Lagoa, C.M., et al: ‘A sparsification approach to set membership identification of switched affine systems’, IEEE Trans. Autom. Control, 2012, 57, (3), pp. 634648.
    19. 19)
      • 16. Bemporad, A., Garulli, A., Paoletti, S., et al: ‘A bounded-error approach to piecewise affine system identification’, IEEE Trans. Autom. Control, 2005, 50, (10), pp. 15671580.
    20. 20)
      • 1. Liberzon, D.: ‘Switching in systems and control’ (Birkhäuser, Boston, USA, 2003).
    21. 21)
      • 15. Juloski, A.L., Weiland, S., Heemels, W.: ‘A bayesian approach to identification of hybrid systems’, IEEE Trans. Autom. Control, 2005, 50, (10), pp. 15201533.
    22. 22)
      • 26. Kersting, S., Buss, M.: ‘Online identification of piecewise affine systems’. IEEE Control (CONTROL), 2014 UKACC Int. Conf., Loughborough, 2014, pp. 8691.
    23. 23)
      • 6. Niu, B., Zhao, X., Fan, X., et al: ‘A new control method for state-constrained nonlinear switched systems with application to chemical process’, Int. J. Control, 2015, 88, (9), pp. 16931701.
    24. 24)
      • 20. Bako, L., Boukharouba, K., Duviella, E., et al: ‘A recursive identification algorithm for switched linear/affine models’, Nonlinear Anal. Hybrid Syst., 2011, 5, (2), pp. 242253.
    25. 25)
      • 9. Almér, S., Mariéthoz, S., Morari, M.: ‘Piecewise affine modeling and control of a step-up DC-DC converter’. IEEE, Proc. 2010 American Control Conf., Baltimore, 2010, pp. 32993304.
    26. 26)
      • 24. Lopes, R.V., Borges, G.A., Ishihara, J.Y.: ‘New algorithm for identification of discrete-time switched linear systems’. IEEE 2013 American Control Conf., Washington, 2013, pp. 62196224.
    27. 27)
      • 10. Paoletti, S., Juloski, A.L., Ferrari Trecate, G., et al: ‘Identification of hybrid systems a tutorial’, Eur. J. Control, 2007, 13, (2), pp. 242260.
    28. 28)
      • 28. Kersting, S., Buss, M.: ‘Adaptive identification of continuous-time switched linear and piecewise linear systems’. IEEE 2014, Control Conf. (ECC), European, Strasbourg, 2014, pp. 3136.
    29. 29)
      • 25. di Bernardo, M., Montanaro, U., Santini, S.: ‘Hybrid minimal control synthesis identification of continuous piecewise linear systems’. Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conf. CDC/CCC 2009. Proc. 48th IEEE Conf., Shanghai, 2009, pp. 31883193.
    30. 30)
      • 18. Ozay, N., Sznaier, M.: ‘Hybrid system identification with faulty measurements and its application to activity analysis’. IEEE 2011 50th IEEE Conf. Decision and Control and European Control Conf., Orlando, 2011, pp. 50115016.
    31. 31)
      • 14. Vidal, R., Soatto, S., Ma, Y., et al: ‘An algebraic geometric approach to the identification of a class of linear hybrid systems’. Decision and Control, 2003. IEEE Proc. 42nd IEEE Conf., Hawaii, vol. 1, 2003, pp. 167172.
    32. 32)
      • 4. Sutarto, H.Y., Boel, R.K., Joelianto, E.: ‘Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation’, IET Control Theory Applic., 2015, 9, (11), pp. 16831691.
    33. 33)
      • 36. Ljung, L.: ‘System identification: theory for the user’ (Upper Saddle River, NJ, Prentice-Hall, 1999).
    34. 34)
      • 27. Kersting, S., Buss, M.: ‘Concurrent learning adaptive identification of piecewise affine systems’. 53rd IEEE Conf. Decision and Control, 2014, pp. 39303935.
    35. 35)
      • 8. Molla Ahmadian, H., Karimpour, A., Pariz, N., et al: ‘Hybrid modeling of a DC-DC series resonant converter: direct piecewise affine approach’, IEEE Trans. Circuits Syst. I Regul. Pap., 2012, 59, (12), pp. 31123120.
    36. 36)
      • 33. Higham, N.J.: ‘Functions of matrices: theory and computation’ (SIAM, Philadelphia, 2008).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0555
Loading

Related content

content/journals/10.1049/iet-cta.2017.0555
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading