http://iet.metastore.ingenta.com
1887

Identification of continuous-time switched linear systems from low-rate sampled data

Identification of continuous-time switched linear systems from low-rate sampled data

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is about the identification problem of continuous-time switched linear systems from low-rate sampled data. The main problem in the identification of such systems, when the sampling rate is low, is that the sampling instances do not coincide with the switching times. Therefore, some of the measured samples are generated from more than one subsystem. This problem was first observed during the sampling of a step-up DC–DC converter at the rate of 100 kHz. The current study aims to explain the theoretical aspects of the identification problem of continuous-time switched linear systems, and to offer a new method for estimating of subsystem parameters plus the switching times. The proposed method accurately determines the switching times which might be between two consecutive sampling instances. The results obtained from the proposed method are used to determine the switching times and parameters of an experimental DC–DC boost converter.

References

    1. 1)
      • 1. Liberzon, D.: ‘Switching in systems and control’ (Birkhäuser, Boston, USA, 2003).
    2. 2)
      • 2. Vaezi, M., Izadian, A.: ‘Piecewise affine system identification of a hydraulic wind power transfer system’, IEEE Trans. Control Syst. Technol., 2015, 23, (6), pp. 20772086.
    3. 3)
      • 3. Vaezi, M., Khayyer, P., Izadian, A.: ‘Optimum adaptive piecewise linearization: an estimation approach in wind power’, IEEE Trans. Control Syst. Technol., 201625, (3), pp. 808817.
    4. 4)
      • 4. Sutarto, H.Y., Boel, R.K., Joelianto, E.: ‘Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation’, IET Control Theory Applic., 2015, 9, (11), pp. 16831691.
    5. 5)
      • 5. Niu, B., Ahn, C.K., Li, H., et al: ‘Adaptive control for stochastic switched nonlower triangular nonlinear systems and its application to a one-link manipulator’, IEEE Trans. Syst. Man Cybern. Syst., 2017.
    6. 6)
      • 6. Niu, B., Zhao, X., Fan, X., et al: ‘A new control method for state-constrained nonlinear switched systems with application to chemical process’, Int. J. Control, 2015, 88, (9), pp. 16931701.
    7. 7)
      • 7. Geyer, T., Papafotiou, G., Morari, M.: ‘Hybrid model predictive control of the step-down dc–dc converter’, IEEE Trans. Control Syst. Technol., 2008, 16, (6), pp. 11121124.
    8. 8)
      • 8. Molla Ahmadian, H., Karimpour, A., Pariz, N., et al: ‘Hybrid modeling of a DC-DC series resonant converter: direct piecewise affine approach’, IEEE Trans. Circuits Syst. I Regul. Pap., 2012, 59, (12), pp. 31123120.
    9. 9)
      • 9. Almér, S., Mariéthoz, S., Morari, M.: ‘Piecewise affine modeling and control of a step-up DC-DC converter’. IEEE, Proc. 2010 American Control Conf., Baltimore, 2010, pp. 32993304.
    10. 10)
      • 10. Paoletti, S., Juloski, A.L., Ferrari Trecate, G., et al: ‘Identification of hybrid systems a tutorial’, Eur. J. Control, 2007, 13, (2), pp. 242260.
    11. 11)
      • 11. Roll, J., Bemporad, A., Ljung, L.: ‘Identification of piecewise affine systems via mixed-integer programming’, Automatica, 2004, 40, (1), pp. 3750.
    12. 12)
      • 12. Ferrari Trecate, G., Muselli, M., Liberati, D., et al: ‘A clustering technique for the identification of piecewise affine systems’, Automatica, 2003, 39, (2), pp. 205217.
    13. 13)
      • 13. Ozay, N., Sznaier, M., Lagoa, C.M., et al: ‘A sparsification approach to set membership identification of switched affine systems’, IEEE Trans. Autom. Control, 2012, 57, (3), pp. 634648.
    14. 14)
      • 14. Vidal, R., Soatto, S., Ma, Y., et al: ‘An algebraic geometric approach to the identification of a class of linear hybrid systems’. Decision and Control, 2003. IEEE Proc. 42nd IEEE Conf., Hawaii, vol. 1, 2003, pp. 167172.
    15. 15)
      • 15. Juloski, A.L., Weiland, S., Heemels, W.: ‘A bayesian approach to identification of hybrid systems’, IEEE Trans. Autom. Control, 2005, 50, (10), pp. 15201533.
    16. 16)
      • 16. Bemporad, A., Garulli, A., Paoletti, S., et al: ‘A bounded-error approach to piecewise affine system identification’, IEEE Trans. Autom. Control, 2005, 50, (10), pp. 15671580.
    17. 17)
      • 17. Wang, J., Chen, T.: ‘Parameter estimation of periodically switched linear systems’, IET Control Theory Applic., 2012, 6, (6), pp. 768775.
    18. 18)
      • 18. Ozay, N., Sznaier, M.: ‘Hybrid system identification with faulty measurements and its application to activity analysis’. IEEE 2011 50th IEEE Conf. Decision and Control and European Control Conf., Orlando, 2011, pp. 50115016.
    19. 19)
      • 19. Lauer, F., Bloch, G., Vidal, R.: ‘A continuous optimization framework for hybrid system identification’, Automatica, 2011, 47, (3), pp. 608613.
    20. 20)
      • 20. Bako, L., Boukharouba, K., Duviella, E., et al: ‘A recursive identification algorithm for switched linear/affine models’, Nonlinear Anal. Hybrid Syst., 2011, 5, (2), pp. 242253.
    21. 21)
      • 21. Vidal, R.: ‘Recursive identification of switched arx systems’, Automatica, 2008, 44, (9), pp. 22742287.
    22. 22)
      • 22. Bako, L., Mercere, G., Lecoeuche, S.: ‘On-line structured subspace identification with application to switched linear systems’, Int. J. Control, 2009, 82, (8), pp. 14961515.
    23. 23)
      • 23. Verdult, V., Verhaegen, M.: ‘Subspace identification of piecewise linear systems’. Decision and Control, 2004. CDC. 43rd IEEE Conf., Bahamas, vol. 4, 2004, pp. 38383843.
    24. 24)
      • 24. Lopes, R.V., Borges, G.A., Ishihara, J.Y.: ‘New algorithm for identification of discrete-time switched linear systems’. IEEE 2013 American Control Conf., Washington, 2013, pp. 62196224.
    25. 25)
      • 25. di Bernardo, M., Montanaro, U., Santini, S.: ‘Hybrid minimal control synthesis identification of continuous piecewise linear systems’. Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conf. CDC/CCC 2009. Proc. 48th IEEE Conf., Shanghai, 2009, pp. 31883193.
    26. 26)
      • 26. Kersting, S., Buss, M.: ‘Online identification of piecewise affine systems’. IEEE Control (CONTROL), 2014 UKACC Int. Conf., Loughborough, 2014, pp. 8691.
    27. 27)
      • 27. Kersting, S., Buss, M.: ‘Concurrent learning adaptive identification of piecewise affine systems’. 53rd IEEE Conf. Decision and Control, 2014, pp. 39303935.
    28. 28)
      • 28. Kersting, S., Buss, M.: ‘Adaptive identification of continuous-time switched linear and piecewise linear systems’. IEEE 2014, Control Conf. (ECC), European, Strasbourg, 2014, pp. 3136.
    29. 29)
      • 29. Sun, Z., Ge, S.S.: ‘Stability theory of switched dynamical systems’ (Springer-Verlag, 2011).
    30. 30)
      • 30. Sun, Z., Ge, S.S.: ‘Switched linear systems: control and design’ (Springer, London, 2005).
    31. 31)
      • 31. Ogata, K.: ‘Discrete-time control systems’, vol. 2, (Prentice Hall Englewood Cliffs, NJ, 1995).
    32. 32)
      • 32. Culver, W.J.: ‘On the existence and uniqueness of the real logarithm of a matrix’, Proc. Am. Math. Soc., 1966, 17, (5), pp. 11461151.
    33. 33)
      • 33. Higham, N.J.: ‘Functions of matrices: theory and computation’ (SIAM, Philadelphia, 2008).
    34. 34)
      • 34. Dieci, L.: ‘Considerations on computing real logarithms of matrices, hamiltonian logarithms, and skew-symmetric logarithms’, Linear Algebr. Appl., 1996, 244, pp. 3554.
    35. 35)
      • 35. Dieci, L., Morini, B., Papini, A.: ‘Computational techniques for real logarithms of matrices’, SIAM J. Matrix Anal. Appl., 1996, 17, (3), pp. 570593.
    36. 36)
      • 36. Ljung, L.: ‘System identification: theory for the user’ (Upper Saddle River, NJ, Prentice-Hall, 1999).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0555
Loading

Related content

content/journals/10.1049/iet-cta.2017.0555
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address