© The Institution of Engineering and Technology
This study deals with switched nonlinear systems subject to sampleddata control. The states and switching signals of controllers in this study are both considered to be sampled. The corresponding closedloop systems are modelled as asynchronously switched T–S fuzzy systems with timevarying delay. Based on asynchronous switching approach and timevarying delay approach, the state feedback controllers are designed in terms of a strict linear matrix inequality. Moreover, the switching strategy is studied to guarantee the exponential stability of the systems. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
References


1)

1. Zhang, L., Zhuang, S., Braatz, R.D.: ‘Switched model predictive control of switched linear systems: feasibility, stability and robustness’, Automatica, 2016, 67, pp. 8–21.

2)

2. Wu, L., Zheng, W.X., Gao, H.: ‘Dissipativitybased sliding mode control of switched stochastic systems’, IEEE Trans. Autom. Control, 2013, 58, (3), pp. 785–791.

3)

3. Li, H., Pan, Y., Shi, P., , et al: ‘Switched fuzzy output feedback control and its application to a massspringdamping system’, IEEE Trans. Fuzzy Syst., 2016, 24, (6), pp. 1259–1269.

4)

4. Xiang, W.: ‘Necessary and sufficient condition for stability of switched uncertain linear systems under dwelltime constraint’, IEEE Trans. Autom. Control, 2016, 61, (11), pp. 3619–3624.

5)

5. Xiang, Z., Liu, S., Mahmoud, M.S.: ‘Robust H∞ reliable control for uncertain switched neutral systems with distributed delays’, IMA J. Math. Control Inf., 2015, 32, (1), pp. 1–19.

6)

6. De la Sen, M., Ibeas, A.: ‘On the global asymptotic stability of switched linear timevarying systems with constant point delays’, Discrete Dyn. Nat. Soc., 2008, 2008, .

7)

7. Niu, B., Karimi, H.R., Wang, H., , et al: ‘Adaptive outputfeedback controller design for switched nonlinear stochastic systems with a modified average dwelltime method’, IEEE Trans. Syst. Man Cybern. Syst., 2017.

8)

8. Zhang, J., Han, Z., Zhu, F., , et al: ‘Absolute exponential stability and stabilization of switched nonlinear systems’, Syst. Control Lett., 2014, 66, pp. 51–57.

9)

9. Wu, Z.G., Shi, P., Shu, Z., , et al: ‘Passivitybased asynchronous control for Markov jump systems’, IEEE Trans. Autom. Control, 2017.

10)

10. Zhang, L., Shi, P.: ‘Stability, l2gain and asynchronous H∞ control of discretetime switched systems with average dwell time’, IEEE Trans. Autom. Control, 2009, 54, (9), pp. 2192–2199.

11)

11. Wang, Y.E., Sun, X.M., Wu, B.W.: ‘Lyapunov–Krasovskii functionals for switched nonlinear input delay systems under asynchronous switching’, Automatica, 2015, 61, pp. 126–133.

12)

12. Lian, J., Mu, C., Shi, P.: ‘Asynchronous H∞ filtering for switched stochastic systems with timevarying delay’, Inf. Sci., 2013, 224, pp. 200–212.

13)

13. Zong, G., Wang, R., Zheng, W., , et al: ‘Finitetime H∞ control for discretetime switched nonlinear systems with time delay’, Int. J. Robust Nonlinear Control, 2015, 25, (6), pp. 914–936.

14)

14. Fu, J., Ma, R., Chai, T.: ‘Global finitetime stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers’, Automatica, 2015, 54, pp. 360–373.

15)

15. Su, X., Wu, L., Shi, P., , et al: ‘Model approximation for fuzzy switched systems with stochastic perturbation’, IEEE Trans. Fuzzy Syst., 2015, 23, (5), pp. 1458–1473.

16)

16. Shen, M., Park, J.H., Ye, D.: ‘A separated approach to control of Markov jump nonlinear systems with general transition probabilities’, IEEE Trans. Cybern., 2016, 46, (9), pp. 2010–2018.

17)

17. BilbaoGuillerna, A., De la Sen, M., Ibeas, A., , et al: ‘Robustly stable multiestimation scheme for adaptive control and identification with model reduction issues’, Discrete Dyn. Nat. Soc., 2005, 1, pp. 31–67.

18)

18. Li, H., Jing, X., Lam, H.K., , et al: ‘Fuzzy sampleddata control for uncertain vehicle suspension systems’, IEEE Trans. Cybern., 2014, 44, (7), pp. 1111–1126.

19)

19. Mao, Y., Zhang, H., Xu, S.: ‘The exponential stability and asynchronous stabilization of a class of switched nonlinear system via the T–S fuzzy model’, IEEE Trans. Fuzzy Syst., 2014, 22, (4), pp. 817–828.

20)

20. Kao, Y., Xie, J., Wang, C., , et al: ‘A sliding mode approach to H∞ nonfragile observerbased control design for uncertain Markovian neutraltype stochastic systems’, Automatica, 2015, 52, pp. 218–226.

21)

21. Qi, W., Park, J.H., Jun, C., , et al: ‘Robust stabilization for nonlinear timedelay semiMarkovian jump systems via sliding mode control’, IET Control Theory Appl., 2017, 11, pp. 1504–1513.

22)

22. Zhao, X., Shi, P., Zheng, X., , et al: ‘Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator deadzone’, Automatica, 2015, 60, pp. 193–200.

23)

23. Long, L., Zhao, J.: ‘Adaptive fuzzy outputfeedback control for switched uncertain nonlinear systems’, IET Control Theory Appl., 2016, 10, (7), pp. 752–761.

24)

24. Fu, J., Li, T.F., Chai, T., , et al: ‘Sampleddatabased stabilization of switched linear neutral systems’, Automatica, 2016, 72, pp. 92–99.

25)

25. Lian, J., Li, C., Xia, B.: ‘Sampleddata control of switched linear systems with application to an F18 aircraft’, IEEE Trans. Ind. Electron., 2017.

26)

26. Wag, M., Qiu, J., Chadli, M., , et al: ‘A switched system approach to exponential stabilization of sampleddata T–S fuzzy systems with packet dropouts’, IEEE Trans. Cybern., 2016, 46, (12), pp. 3145–3156.

27)

27. Fujioka, H.: ‘A discretetime approach to stability analysis of systems with aperiodic sampleandhold devices’, IEEE Trans. Autom. Control, 2009, 54, (10), pp. 2440–2445.

28)

28. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: ‘Exponential stability of impulsive systems with application to uncertain sampleddata systems’, Syst. Control Lett., 2008, 57, (5), pp. 378–385.

29)

29. Wang, Z., Zhang, H., Yu, W.: ‘Robust exponential stability analysis of neural networks with multiple time delays’, Neurocomputing, 2007, 70, (13), pp. 2534–2543.

30)

30. Wang, B., Zhang, H., Wang, G., , et al: ‘Asynchronous control of discretetime impulsive switched systems with modedependent average dwell time’, ISA Trans., 2014, 53, (2), pp. 367–372.

31)

31. Lian, J., Shi, P., Feng, Z.: ‘Passivity and passification for a class of uncertain switched stochastic timedelay systems’, IEEE Trans. Cybern., 2013, 43, (1), pp. 3–13.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2017.0521
Related content
content/journals/10.1049/ietcta.2017.0521
pub_keyword,iet_inspecKeyword,pub_concept
6
6