access icon free Exponential stability of impulsive systems with random delays under sampled-data control

In this study, the exponential stability problem of impulsive system is investigated via sampled-data control in the presence of random time-varying delays and non-linear perturbations. In particular, the time delays are considered to be randomly time varying and they obey the Bernoulli distributions. The authors' main attention is focused on the design of a sampled-data controller to ensure an exponential stability for the closed-loop system. By extending the first- and second-order reciprocal convex approach, an efficient method called third-order reciprocal convex technique is used to manipulate the main results. Through the construction of a suitable Lyapunov–Krasovskii functional combined with input delay approach and Briat lemma, several delay-dependent sufficient conditions for the concerned system are derived in the form of linear matrix inequalities which can be readily solved by utilising the valid software packages. Some numerical examples are given to illustrate the effectiveness of the developed control technique.

Inspec keywords: convex programming; nonlinear control systems; sampled data systems; Lyapunov methods; time-varying systems; closed loop systems; linear matrix inequalities; delay systems; asymptotic stability; control system synthesis

Other keywords: closed-loop system; Briat lemma; impulsive systems; third-order reciprocal convex technique; linear matrix inequalities; second-order reciprocal convex approach; delay-dependent sufficient conditions; software packages; Lyapunov-Krasovskii functional; exponential stability problem; random time-varying delays; input delay approach; sampled-data control design; nonlinear perturbations; first-order reciprocal convex approach; Bernoulli distributions

Subjects: Discrete control systems; Control system analysis and synthesis methods; Time-varying control systems; Linear algebra (numerical analysis); Stability in control theory; Nonlinear control systems; Distributed parameter control systems; Optimisation techniques

References

    1. 1)
      • 12. Balasubramaniam, P., Krishnasamy, R.: ‘Robust exponential stabilization results for impulsive neutral time-delay systems with sector-bounded nonlinearity’, Circuits Syst. Signal Process., 2014, 33, pp. 27412759.
    2. 2)
      • 35. Hua, C., Ge, C., Guan, X.: ‘Synchronization of chaotic Lur'e systems with time delays using sampled-data control’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (6), pp. 12141221.
    3. 3)
      • 28. Park, P., Ko, J.W., Jeong, C.: ‘Reciprocally convex approach to stability of systems with time-varying delays’, Automatica, 2011, 47, (1), pp. 235238.
    4. 4)
      • 1. Xiong, W., Zhang, D., Cao, J.: ‘Impulsive synchronisation of singular hybrid coupled networks with time-varying nonlinear perturbation’, Int. J. Syst. Sci., 2017, 48, (2), pp. 417424.
    5. 5)
      • 22. Sakthivel, R., Arunkumar, A., Mathiyalagan, K.: ‘Robust sampled-data H control for mechanical systems’, Complexity, 2015, 20, (4), pp. 1929.
    6. 6)
      • 37. Lakshmanan, S., Park, J.H., Rihan, F.A., et al: ‘Impulsive effect on exponential synchronization of neural networks with leakage delay under sampled-data feedback control’, Chin. Phys. B, 2014, 23, (7), p. 070205.
    7. 7)
      • 41. Qiu, F., Cao, J.: ‘Exponential stability and L2-gain analysis for sampled-data control of linear systems’, J. Franklin Inst., 2016, 353, (2), pp. 462477.
    8. 8)
      • 14. Peng, C., Zhang, J.: ‘Delay-distribution-dependent load frequency control of power systems With probabilistic interval delays’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 33093317.
    9. 9)
      • 5. Zhu, Q., Song, B.: ‘Exponential stability of impulsive nonlinear stochastic differential equations with mixed delays’, Nonlinear Anal., Real World Appl., 2011, 12, (5), pp. 28512860.
    10. 10)
      • 21. Rakkiyappan, R., Sakthivel, N.: ‘Pinning sampled-data control for synchronization of complex networks with probabilistic time-varying delays using quadratic convex approach’, Neurocomputing, 2015, 162, pp. 2640.
    11. 11)
      • 29. Lee, W.I., Park, P.: ‘Second-order reciprocally convex approach to stability of systems with interval time-varying delays’, Appl. Math. Comput., 2014, 229, pp. 245253.
    12. 12)
      • 38. Lee, L., Liu, Y., Liang, J., et al: ‘Finite time stability of nonlinear impulsive systems and its applications in sampled-data systems’, ISA Trans., 2015, 57, pp. 172178.
    13. 13)
      • 23. Shi, K., Liu, X., Zhu, H., et al.: ‘Novel integral inequality approach on master-slave synchronization of chaotic delayed Lur'e systems with sampled-data feedback control’, Nonlinear Dyn., 2016, 83, (3), pp. 12591274.
    14. 14)
      • 32. Liu, Y., Hu, L.-S., Shi, P.: ‘A novel approach on stabilization for linear systems with time-varying input delay’, Appl. Math. Comput., 2012, 218, pp. 59375947.
    15. 15)
      • 25. Wu, Z.G., Shi, P., Su, H., et al: ‘Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data’, IEEE Trans. Cybern., 2013, 43, (6), pp. 17961806.
    16. 16)
      • 8. Rogovchenko, Y.V.: ‘Impulsive evolution systems: main results and new trends’, Dyn. Continuous Discret. Impulsive Syst., 1997, 3, (1), pp. 5788.
    17. 17)
      • 33. Revathi, V.M., Balasubramaniam, P., Park, J.H., et al: ‘Hfiltering for sample data systems with stochastic sampling and Markovian jumping parameters’, Nonlinear Dyn., 2014, 78, (2), pp. 813830.
    18. 18)
      • 40. Xu, S., Chen, T.: ‘Robust H filtering for uncertain impulsive stochastic systems under sampled measurements’, Automatica (J. IFAC), 2003, 39, (3), pp. 509516.
    19. 19)
      • 2. Zhang, W., Tang, Y., Miao, Q., et al.: ‘Synchronization of stochastic dynamical networks under impulsive control with time delays’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (10), pp. 17581768.
    20. 20)
      • 18. Liu, J., Yue, D.: ‘Event-based fault detection for networked systems with communication delay and nonlinear perturbation’, J. Franklin Inst., 2013, 350, (9), pp. 27912807.
    21. 21)
      • 15. Sakthivel, R., Selvi, S., Mathiyalagan, K., et al.: ‘Reliable mixed and passivity-based control for fuzzy Markovian switching systems with probabilistic time delays and actuator failures’, IEEE Trans. Cybern., 2015, 45, (12), pp. 27202731.
    22. 22)
      • 34. Zhang, W., Tang, Y., Miao, Q., et al: ‘Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (8), pp. 13161326.
    23. 23)
      • 39. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: ‘Exponential stability of impulsive systems with application to uncertain sampled-data systems’, Syst. Control Lett., 2008, 57, (5), pp. 378385.
    24. 24)
      • 24. Song, Q., Liu, F., Wen, G., et al.: ‘Synchronization of coupled harmonic oscillators via sampled position data control’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2016, 63, (7), pp. 10791088.
    25. 25)
      • 16. Krishnasamy, R., Balasubramaniam, P.: ‘A descriptor system approach to the delay-dependent exponential stability analysis for switched neutral systems with nonlinear perturbations’, Nonlinear Anal., Hybrid Syst., 2015, 15, pp. 2336.
    26. 26)
      • 30. Wang, H., Duan, S., Li, C., et al.: ‘Globally exponential stability of delayed impulsive functional differential systems with impulse time windows’, Nonlinear Dyn., 2016, 84, (3), pp. 16551665.
    27. 27)
      • 27. Chandrasekar, A., Rakkiyappan, R., Cao, J., et al.: ‘Synchronization of memristor-based recurrent neural networks with two delay components based on second-order reciprocally convex approach’, IEEE Trans. Neural Netw., 2014, 57, pp. 7993.
    28. 28)
      • 42. Wu, W., Reimann, S., Gorges, D., et al: ‘Suboptimal event-triggered control for time-delayed linear systems’, IEEE Trans. Autom. Control, 2015, 60, (5), pp. 13861391.
    29. 29)
      • 36. Guan, Z.-H., Han, G.-S., Li, J., et al: ‘Impulsive multiconsensus of second-order multiagent networks using sampled position data’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (11), pp. 26782688.
    30. 30)
      • 7. Liu, B., Liu, X., Chen, G., et al.: ‘Robust impulsive synchronization of uncertain dynamical networks’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2005, 52, (7), pp. 14311441.
    31. 31)
      • 13. Mathiyalagan, K., Su, H., Shi, P., et al.: ‘Exponential H filtering for discrete-time switched neural networks with random delays’, IEEE Trans. Cybern., 2015, 45, (4), pp. 676687.
    32. 32)
      • 17. Lian, J., Wang, M.: ‘Sliding-mode control of switched delay systems with nonlinear perturbations: average dwell time approach’, Nonlinear Dyn., 2010, 62, (4), pp. 791798.
    33. 33)
      • 10. Zheng, C.D., Xian, Y., Wang, Z.: ‘Third-order reciprocally convex approach to stability of fuzzy cellular neural networks under impulsive perturbations’, Soft Comput., 2017, 21, (3), pp. 699720.
    34. 34)
      • 3. Zhang, W., Tang, Y., Wu, X., et al.: ‘Synchronization of nonlinear dynamical networks with heterogeneous impulses’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2014, 61, (4), pp. 12201228.
    35. 35)
      • 26. Seuret, A., Gouaisbaut, F.: ‘Wirtinger-based integral inequality: application to time-delay systems’, Automatica, 2013, 49, pp. 28602866.
    36. 36)
      • 20. Rakkiyappan, R., Dharani, S., Zhu, Q.: ‘Synchronization of reaction-diffusion neural networks with time-varying delays via stochastic sampled-data controller’, Nonlinear Dyn., 2015, 79, (1), pp. 485500.
    37. 37)
      • 19. Rakkiyappan, R., Lakshmanan, S., Sivasamy, R., et al.: ‘Leakage-delay-dependent stability analysis of Markovian jumping linear systems with time-varying delays and nonlinear perturbations’, Appl. Math. Model., 2016, 40, (7), pp. 50265043.
    38. 38)
      • 31. Boyd, S., Ghaoui, L.E., Feron, E., et al.: ‘Linear matrix inequalities in system and control theory’ (SIAM, Philadelphia, PA, 1994).
    39. 39)
      • 4. Zhu, Q.: ‘pth moment exponential stability of impulsive stochastic functional differential equations with Markovian switching’, J. Franklin Inst., 2014, 351, (7), pp. 39653986.
    40. 40)
      • 9. Zhu, Q., Cao, J.: ‘Robust exponential stability of Markovian jump impulsive stochastic Cohen–Grossberg neural networks with mixed time delays’, IEEE Trans. Neural Netw., 2010, 21, (8), pp. 13141325.
    41. 41)
      • 11. Gao, S., Chen, L., Nieto, J.J., et al.: ‘Analysis of a delayed epidemic model with pulse vaccination and saturation incidence’, Vaccine, 2006, 24, (35), pp. 60376045.
    42. 42)
      • 6. Bainov, D., Simeonov, P.: ‘Systems with impulse effects: stability, theory and applications’ (Academy Press, 1989).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0503
Loading

Related content

content/journals/10.1049/iet-cta.2017.0503
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading