http://iet.metastore.ingenta.com
1887

Decentralised fault-tolerant control of tethered spacecraft formation: an interconnected system approach

Decentralised fault-tolerant control of tethered spacecraft formation: an interconnected system approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a novel control strategy of a three-inline array tethered spacecraft formation is proposed, based on a simplified non-linear model around the equilibrium point. The formation stability is analysed by using an interconnected system approach which deeply reveals the coupling characteristic among three spacecraft. It is shown that both individual control laws of spacecraft and the coupling effects can achieve the stability. The problems of fault-tolerant control and fault propagation are further discussed. Simulation results validate the effectiveness of the proposed methods.

References

    1. 1)
      • 1. Alfriend, K.T., Vadali, S., Gurfil, P., et al.: ‘Spacecraft formation flying: dynamics, control and navigation’ (Butterworth-Heinemann, 2009).
    2. 2)
      • 2. Gao, H., Yang, X., Shi, P.: ‘Multi-objective robust control of spacecraft rendezvous’, IEEE Trans. Control Syst. Technol., 2009, 17, (4), pp. 794802.
    3. 3)
      • 3. Du, H., Li, S., Qian, C.: ‘Finite-time attitude tracking control of spacecraft with application to attitude synchronization’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 27112717.
    4. 4)
      • 4. Mori, O., Matunaga, S.: ‘Formation and attitude control for rotational tethered satellite clusters’, J. Spacecr. Rockets, 2007, 44, (1), pp. 211220.
    5. 5)
      • 5. Larsen, M.B., Blanke, M.: ‘Passivity-based control of a rigid electrodynamic tether’, J. Guid. Control Dyn., 2011, 34, (1), pp. 118127.
    6. 6)
      • 6. Hu, Q.L.: ‘Sliding mode attitude control with L 2-gain performance and vibration reduction of flexible spacecraft with actuator dynamics’, Acta Astronaut., 2010, 67, (5), pp. 572583.
    7. 7)
      • 7. Lee, T., Leok, M., McClamroch, N.H.: ‘High-fidelity numerical simulation of complex dynamics of tethered spacecraft’, Acta Astronaut., 2014, 99, pp. 215230.
    8. 8)
      • 8. Li, G.Q., Zhu, Z.H.: ‘Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration’, Celest. Mech. Dyn. Astron., 2015, 123, (4), pp. 363386.
    9. 9)
      • 9. Sun, H.B., Li, S.H., Fei, S.M.: ‘A composite control scheme for 6DOF spacecraft formation control’, Acta Astronaut., 2011, 69, (7), pp. 595611.
    10. 10)
      • 10. Bombardelli, C., Lorenzini, E.C., Quadrelli, M.B.: ‘Retargeting dynamics of a linear tethered interferometer’, J. Guid. Control Dyn., 2004, 27, (6), pp. 10611067.
    11. 11)
      • 11. Chung, S.J., Slotine, J.J.E., Miller, D.W.: ‘Nonlinear model reduction and decentralized control of tethered formation flight’, J. Guid. Control Dyn., 2007, 30, (2), pp. 390400.
    12. 12)
      • 12. Chang, I., Park, S.Y., Choi, K.: ‘Nonlinear attitude control of a tether-connected multi-satellite in three-dimensional space’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (4), pp. 19501968.
    13. 13)
      • 13. Yan, X.G., Spurgeon, S.K., Edwards, C.: ‘Global decentralised static output feedback sliding-mode control for interconnected time-delay systems’, IET Control Theory Appl., 2012, 6, (2), pp. 192202.
    14. 14)
      • 14. Blanke, M., Kinnaert, M., Lunze, J., et al.: ‘Diagnosis and fault-tolerant Control’ (Springer Verlag, Berlin Heidelberg, 2006, 2st edn.).
    15. 15)
      • 15. Zhang, Y.M., Jiang, J.: ‘Bibliographical review on reconfigurable fault-tolerant control systems’, Annu. Rev. Control, 2008, 32, (2), pp. 229252.
    16. 16)
      • 16. Patton, R.J.: ‘Fault-tolerant control’ (Encyclopedia of Systems and Control, 2015), pp. 422428.
    17. 17)
      • 17. Tong, S., Huo, B., Li, Y.: ‘Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 115.
    18. 18)
      • 18. Li, Y., Tong, S.: ‘Adaptive neural networks decentralized FTC design for nonstrict-feedback nonlinear interconnected large-scale systems against actuator faults’, IEEE Trans. Neural Netw. Learn. Syst., 2016, DOI: 10.1109/TNNLS.2016.2598580.
    19. 19)
      • 19. Li, Y., Ma, Z., Tong, S.: ‘Adaptive fuzzy output-constrained fault-tolerant control of nonlinear stochastic large-scale systems with actuator faults’, IEEE Trans. Cybern., 2017, 47, (9), pp. 23622376.
    20. 20)
      • 20. Tong, S., Wang, T., Li, Y.: ‘Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics’, IEEE Trans. Fuzzy Syst., 2014, 22, (3), pp. 563574.
    21. 21)
      • 21. Wang, Z., Liu, L., Zhang, H., et al.: ‘Fault-tolerant controller design for a class of nonlinear MIMO discrete-time systems via online reinforcement learning algorithm’, IEEE Trans. Syst. Man Cybern., Syst., 2016, 46, (5), pp. 611622.
    22. 22)
      • 22. Yin, S., Xiao, B., Ding, S.X., et al.: ‘A review on recent development of spacecraft attitude fault tolerant control system’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 33113320.
    23. 23)
      • 23. Hu, Q.L., Xiao, B., Friswell, M.I.: ‘Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation’, IET Control Theory Appl., 2011, 5, (2), pp. 271282.
    24. 24)
      • 24. Hu, Q.L., Xiao, B., Zhang, Y.M.: ‘Fault-tolerant attitude control for spacecraft under loss of actuator effectiveness’, J. Guid. Control Dyn., 2011, 34, (3), pp. 927932.
    25. 25)
      • 25. Xiao, B., Hu, Q.L., Zhang, Y.M.: ‘Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation’, IEEE Trans. Control Syst. Technol., 2012, 20, (6), pp. 16051612.
    26. 26)
      • 26. Godard, Kumar, K.D.: ‘Robust attitude stabilization of spacecraft subject to actuator failures’, Acta Astronaut., 2011, 68, (7), pp. 12421259.
    27. 27)
      • 27. Zhang, H., Han, J., Wang, Y., et al.: ‘Sensor fault estimation of switched fuzzy systems with unknown input’,IEEE Trans. Fuzzy Syst., 2017, DOI: 10.1109/TFUZZ.2017.2704543.
    28. 28)
      • 28. Azizi, S.M., Khorasani, K.: ‘A hierarchical architecture for cooperative fault accommodation of formation flying satellites in deep space’. Proc. of American Control Conf., June 2009, pp. 41784183.
    29. 29)
      • 29. Yang, H., Jiang, B., Cocquempot, V.: ‘Decentralized fault tolerant formation control for a class of tethered spacecraft’, IFAC-PapersOnLine, 2015, 48, (21), pp. 11281133.
    30. 30)
      • 30. Kumar, K.D., Tan, B.: ‘Fault tolerant stabilization of a tethered satellite system using offset control’, J. Spacecr. Rockets, 2008, 45, (5), pp. 10701084.
    31. 31)
      • 31. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, Upper Saddle River, NJ, 2002, 3rd edn.).
    32. 32)
      • 32. Sontag, E., Wang, Y.: ‘New characterizations of input-to-state stability’, IEEE Trans. Autom. Control, 1996, 41, (9), pp. 12831294.
    33. 33)
      • 33. Dashkovskiy, S.B., Ruffer, B.S., Wirth, F.R.: ‘Small gain theorems for large scale systems and construction of ISS Lyapunov functions’, SIAM J. Control Optim., 2010, 48, (6), pp. 40894118.
    34. 34)
      • 34. Jiang, Z.P., Teel, A.R., Praly, L.: ‘Small-gain theorem for ISS systems and applications’, Math. Control Signals Syst., 1994, 7, (2), pp. 95120.
    35. 35)
      • 35. Barua, A., Khorasani, K.: ‘Hierarchical fault diagnosis and fuzzy rule-based reasoning for satellites formation flight’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (4), pp. 24352456.
    36. 36)
      • 36. Zhang, X., Zhang, Q.: ‘Distributed fault diagnosis in a class of interconnected nonlinear uncertain systems’, Int. J. Control, 2013, 37, (1), pp. 170179.
    37. 37)
      • 37. Jiang, B., Staroswiecki, M., Cocquempot, V.: ‘Fault accommodation for nonlinear dynamic systems’, IEEE Trans. Autom. Control, 2006, 51, (9), pp. 15781583.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0485
Loading

Related content

content/journals/10.1049/iet-cta.2017.0485
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address