http://iet.metastore.ingenta.com
1887

Time-weighted MR for switched LPV systems via balanced realisation

Time-weighted MR for switched LPV systems via balanced realisation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A new model reduction (MR) method is developed for continuous-time switched linear parameter-varying (LPV) systems based on time-weighted gramians. Using time-weighted energy functionals and parameter-independent multiple Lyapunov functions, the time-weighted controllability and observability gramians are obtained. With a balanced transformation matrix optimally derived, the authors show that a balanced realisation can be achieved for the original switched LPV systems. A series of low-order models for different weighting factors are yielded by state truncation or singular perturbation techniques. The reduced-order models can preserve the stability. The feasibility and effectiveness of the proposed MR method are illustrated by two examples including a three spring-mass system.

References

    1. 1)
      • 1. Wu, L., Wang, Z., Gao, H., et al.: ‘H and L2L filtering for two-dimensional linear parameter-varying systems’, Int. J. Robust Nonlinear Control, 2007, 17, (12), pp. 11291154.
    2. 2)
      • 2. Mohammadpour, J., Scherer, C.W.: ‘Control of linear parameter varying systems with applications’ (Springer Science & Business Media, 2012).
    3. 3)
      • 3. Lian, J., Shi, P., Feng, Z.: ‘Passivity and passification for a class of uncertain switched stochastic time-delay systems’, IEEE Trans. Cybern., 2013, 43, (1), pp. 313.
    4. 4)
      • 4. Sakthivel, R., Selvi, S., Mathiyalagan, K., et al.: ‘Reliable mixed H and passivity-based control for fuzzy Markovian switching systems with probabilistic time delays and actuator failures’, IEEE Trans. Cybern., 2015, 45, (12), pp. 27202731.
    5. 5)
      • 5. Eguchi, K., Do, W., Kittipanyangam, S., et al.: ‘Design of a three-phase switched-capacitor ac-ac converter with symmetrical topology’, Int. J. Innov. Comput. Inf. Control, 2016, 12, (5), pp. 14111421.
    6. 6)
      • 6. Abe, K., Smerpitak, K., Pongswatd, S., et al.: ‘A step-down switched-capacitor AC–DC converter with double conversion topology’, Int. J. Innov. Comput. Inf. Control, 2017, 13, (1), pp. 319330.
    7. 7)
      • 7. Lu, B., Wu, F.: ‘Switching LPV control designs using multiple parameter-dependent Lyapunov functions’, Automatica, 2004, 40, (11), pp. 19731980.
    8. 8)
      • 8. He, X., Dimirovski, G.M., Zhao, J.: ‘Control of switched LPV systems using common Lyapunov function method and an F-16 aircraft application’. IEEE Int. Conf. Systems Man and Cybernetics, 2010, pp. 386392.
    9. 9)
      • 9. Yang, D., Zhao, J.: ‘Stabilization for switched LPV systems with Markovian jump parameters and its application’, Asian J. Control, 2016, 19, (1), pp. 111.
    10. 10)
      • 10. Su, X., Wu, L., Shi, P., et al.: ‘H model reduction of Takagi–Sugeno fuzzy stochastic systems’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2012, 42, (6), pp. 15741585.
    11. 11)
      • 11. Zhang, L., Shi, P.: ‘L2L model reduction for switched LPV systems with average dwell time’, IEEE Trans. Autom. Control, 2008, 53, (10), pp. 24432448.
    12. 12)
      • 12. Liu, J., Vazquez, S., Wu, L., et al.: ‘Extended state observer based sliding mode control for three-phase power converters’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 2231.
    13. 13)
      • 13. Liu, J., Wu, C., Wang, Z., , et al.: ‘Reliable filter design for sensor networks in the type-2 fuzzy framework’, IEEE Trans. Ind. Inf., 2017, 13, (4), pp. 17421752.
    14. 14)
      • 14. Gugercin, S., Antoulas, A.C.: ‘A survey of model reduction by balanced truncation and some new results’, Int. J. Control, 2004, 77, (8), pp. 748766.
    15. 15)
      • 15. Monshizadeh, N., Trentelman, H., Camlibel, M.: ‘A simultaneous balanced truncation approach to model reduction of switched linear systems’, IEEE Trans. Autom. Control, 2012, 57, (12), pp. 31183131.
    16. 16)
      • 16. Wood, G.D., Goddard, P.J., Glover, K.: ‘Approximation of linear parameter-varying systems’. IEEE Conf. Decision and Control, 1996, pp. 406411.
    17. 17)
      • 17. Moreno, C.P., Seiler, P.J., Balas, G.J.: ‘Model reduction for aeroservoelastic systems’, J. Aircr., 2014, 51, (1), pp. 280290.
    18. 18)
      • 18. Wittmuess, P., Tarin, C., Keck, A., et al.: ‘Parametric model order reduction via balanced truncation with Taylor series representation’, IEEE Trans. Autom. Control, 2016, 61, (11), pp. 34383451.
    19. 19)
      • 19. Tahavori, M., Shaker, H.: ‘Time-weighted balanced stochastic model reduction’. 50th IEEE Conf. Decision and Control and European Control Conf., 2011, pp. 77777781.
    20. 20)
      • 20. Sreeram, V., Agathoklis, P.: ‘Model reduction of linear continuous systems using weighted impulse response gramians’, IET Control Theory Appl., 1993, 140, (5), pp. 345352.
    21. 21)
      • 21. Sreeram, V.: ‘Frequency response error bounds for time-weighted balanced truncation’. 41st IEEE Conf. Decision and Control, 2002, pp. 33303331.
    22. 22)
      • 22. Benner, P., Damm, T.: ‘Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems’, SIAM J. Control Optim., 2011, 49, (2), pp. 686711.
    23. 23)
      • 23. Briat, C.: ‘Linear parameter-varying and time-delay systems: Analysis, observation, filtering & control’ (Springer, 2014).
    24. 24)
      • 24. Zhang, H., Wu, L., Shi, P., et al.: ‘Balanced truncation approach to model reduction of Markovian jump time-varying delay systems’, J. Franklin Inst., 2015, 352, (10), pp. 42054224.
    25. 25)
      • 25. Farhood, M., Dullerud, G.E.: ‘Model reduction of nonstationary LPV systems’, IEEE Trans. Autom. Control, 2007, 52, (2), pp. 181196.
    26. 26)
      • 26. Zhang, H., Wu, L., Shi, P., et al.: ‘Model reduction on Markovian jump systems with partially unknown transition probabilities: balanced truncation approach’, IET Control Theory Appl., 2015, 9, (9), pp. 14111421.
    27. 27)
      • 27. Sandberg, H., Rantzer, A.: ‘Balanced truncation of linear time-varying systems’, IEEE Trans. Autom. Control, 2004, 49, (2), pp. 217229.
    28. 28)
      • 28. Glover, K.: ‘All optimal Hankel-norm approximations of linear multivariable systems and their L-error bounds’, Int. J. Control, 1984, 39, (6), pp. 11151193.
    29. 29)
      • 29. Antoulas, A.C.: ‘Approximation of large-scale dynamical systems’ (SIAM, 2005).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0481
Loading

Related content

content/journals/10.1049/iet-cta.2017.0481
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address