© The Institution of Engineering and Technology
The comprehensive design of uniform robust exact disturbance observer (UREDO) and fixedtime controller for reusable launch vehicles is investigated. A UREDO which can estimate the disturbance after a fixedtime independent of the initial error is presented. Based on the disturbance estimation, a nonsingular terminal sliding mode controller is designed to ensure that the guidance command can be tracked within a fixedtime in the presence of model uncertainties and external disturbances. A proof of the fixedtime convergence of the closedloop system under the control scheme is derived with complete stability analysis using the Lyapunov technique. The features of the proposed control scheme contain that the disturbance estimation, as well as the attitude tracking, can be achieved within a fixedtime, which is independent of initial conditions and the derivative information of states is not essential, which is valuable in engineering application. Numerical simulations are performed to demonstrate the fixedtime convergence performance of the proposed control scheme.
References


1)

1. Shtessel, Y., McDuffie, J., Jackson, M.: ‘Sliding mode control of the X33 vehicle in launch and reentry modes’. AIAA Guidance, Navigation, and Control Conf. and Exhibit, Reston, USA, August 1998, pp. 1–11.

2)

2. Shtessel, Y., Hall, C., Jackson, M.: ‘Reusable launch vehicle control in multiple time scale sliding modes’, J. Guid. Control Dyn., 2000, 23, (6), pp. 1013–1020.

3)

3. Shtessel, Y., Hall, C.: ‘Multiple time scale sliding mode control of reusable launch vehicles in ascent and descent modes’. American Control Conf., Arlington, USA, June 2001, pp. 4357–4362.

4)

4. Tian, B., Zong, Q., Wang, J., et al: ‘Quasicontinuous highorder sliding mode controller design for reusable launch vehicles in reentry phase’, Aerosp. Sci. Technol., 2013, 28, (1), pp. 198–207.

5)

5. Tian, B., Fan, W., Zong, Q., et al: ‘Nonlinear robust control for reusable launch vehicles in reentry phase based on timevarying high order sliding mode’, J. Franklin Inst., 2013, 350, (7), pp. 1787–1807.

6)

6. Tian, B., Fan, W., Zong, Q.: ‘Integrated guidance and control for reusable launch vehicle in reentry phase’, Nonlinear Dyn., 2015, 80, (12), pp. 397–412.

7)

7. Tian, B., Fan, W., Su, R., et al: ‘Realtime trajectory and attitude coordination control for reusable launch vehicle in reentry phase’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 1639–1650.

8)

8. Feng, Y., Yu, X., Man, Z.: ‘Nonsingular terminal sliding mode control of rigid manipulators’, Automatica, 2002, 38, (12), pp. 2159–2167.

9)

9. Polyakov, A.: ‘Nonlinear feedback design for fixedtime stabilization of linear control systems’, IEEE Trans. Autom. Control, 2012, 57, (8), pp. 2106–2110.

10)

10. Polyakov, A.: ‘Fixedtime stabilization via second order sliding mode control’. 4th Int. Federation of Automatic Control (IFAC) Conf. Analysis and Design of Hybrid Systems, Eindhoven, The Netherlands, June 2012, pp. 254–258.

11)

11. Polyakov, A.: ‘Fixedtime stabilization of linear systems via sliding mode control’. 12th IEEE Workshop on Variable Structure Systems, Mumbai, India, January 2012, pp. 1–6.

12)

12. Zuo, Z.: ‘Nonsingular fixedtime terminal sliding mode control of nonlinear systems’, IET Control Theory Appl., 2015, 9, (4), pp. 545–552.

13)

13. Zuo, Z.: ‘Nonsingular fixedtime consensus tracking for secondorder multiagent networks’, Automatica, 2015, 54, pp. 305–309.

14)

14. Defoort, M., Polyakov, A., Demesure, G., et al: ‘Leaderfollower fixedtime consensus for multiagent systems with unknown nonlinear inherent dynamics’, IET Control Theory Appl., 2015, 9, (14), pp. 2165–2170.

15)

15. Parsegov, S., Polyakov, A., Shcherbakov, P.: ‘Fixedtime consensus algorithm for multiagent systems with integrator dynamics’. 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems, Koblenz, Germany, August 2013, pp. 110–115.

16)

16. Zuo, Z., Yang, W., Tie, L., et al: ‘Fixedtime consensus for multiagent systems under directed and switching interaction topology’. American Control Conf., Portland, USA, June 2014, pp. 5133–5138.

17)

17. Parsegov, S., Polyakov, A., Shcherbakov, P.: ‘Nonlinear fixedtime control protocol for uniform allocation of agents on a segment’. 51st IEEE Conf. Decision and Control, Maui, USA, December 2012, pp. 7732–7737.

18)

18. Gao, J., Cai, Y.: ‘Fixedtime control for spacecraft attitude tracking based on quaternion’, Acta Astronaut., 2015, 115, pp. 303–313.

19)

19. Levant, A.: ‘Robust exact differentiation via sliding mode technique’, Automatica, 1998, 34, (3), pp. 379–384.

20)

20. Levant, A.: ‘Higherorder sliding modes, differentiation and outputfeedback control’, Int. J. Control, 2003, 76, (910), pp. 924–941.

21)

21. Hall, C., Shtessel, Y.: ‘Sliding mode disturbance observerbased control for a reusable launch vehicle’, J. Guid. Control Dyn., 2006, 29, (6), pp. 1315–1328.

22)

22. Su, R., Zong, Q, Tian, B., et al: ‘Comprehensive design of disturbance observer and nonsingular terminal sliding mode control for reusable launch vehicles’, IET Control Theory Appl., 2015, 9, (12), pp. 1821–1830.

23)

23. Tian, B., Yin, L., Wang, H.: ‘Finitetime reentry attitude control based on adaptive multivariable disturbance compensation’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 5889–5898.

24)

24. CruzZavala, E., Moreno, J., Fridman, L.: ‘Uniform robust exact differentiator’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 2727–2733.

25)

25. Angulo, M., Moreno, J., Fridman, L.: ‘Robust exact uniformly convergent arbitrary order differentiator’, Automatica, 2013, 49, (8), pp. 2489–2495.

26)

26. CruzZavala, E., Moreno, J., Fridman, L.: ‘Uniform secondorder sliding mode observer for mechanical systems’. 11th IEEE Workshop on Variable Structure Systems, Mexico City, Mexico, June 2010, pp. 14–19.

27)

27. MartnezFonseca, N., Chairez, I., Poznyak, A.: ‘Uniform stepbystep observer for aerobic bioreactor based on supertwisting algorithm’, Bioprocess Biosyst. Eng., 2014, 37, (12), pp. 2493–2503.

28)

28. SanchezTorres, J., Loukianov, A.: ‘A fixedtime second order sliding mode observer for a class of nonlinear systems’. 13th IEEE Workshop on Variable Structure Systems, Nantes, France, July 2014, pp. 1–4.

29)

29. Mincarelli, D., Pisano, A., Floquet, T., et al: ‘Uniformly convergent sliding modebased observation for switched linear systems’, Int. J. Robust Nonlinear Control, 2015, 27, (7), pp. 1549–1564.

30)

30. Fu, J., Wang, J.: ‘Fixedtime coordinated tracking for secondorder multiagent systems with bounded input uncertainties’, Syst. Control Lett., 2016, 93, pp. 1–12.

31)

31. Bhat, S., Bernstein, D.: ‘Finitetime stability of continuous autonomous systems’, SIAM J. Control Optim., 2000, 38, (3), pp. 751–766.

32)

32. Kuang, J.: ‘Applied inequalities’ (Shandong Science and Technology Press, Jinan, China, 2004).

33)

33. Horn, R., Johnson, C.: ‘Topics in matrix analysis’ (Cambridge University Press, Cambridge, UK, 1991).

34)

34. Tian, B., Zong, Q.: ‘Optimal guidance for reentry vehicles based on indirect Legendre pseudospectral method’, Acta Astronaut., 2011, 68, (7), pp. 1176–1184.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2017.0466
Related content
content/journals/10.1049/ietcta.2017.0466
pub_keyword,iet_inspecKeyword,pub_concept
6
6