http://iet.metastore.ingenta.com
1887

Wind turbine control based on a modified model predictive control scheme for linear parameter-varying systems

Wind turbine control based on a modified model predictive control scheme for linear parameter-varying systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a successful application of a model predictive control (MPC) design approach based on linear parameter-varying (LPV) models subject to input/output constraints to control a utility-scale wind turbine. The control objectives are to allow the wind turbine to extract from the wind the rated power taking into account the wind speed variation, to reduce mechanical loads and power fluctuations and to guarantee the stability of the system for the whole range of operation. A modified min–max MPC-LPV scheme is proposed to compute online the optimal control input at each sampling instant by solving an optimisation problem subject to linear matrix inequality constraints. To reduce the conservatism of the original MPC scheme due to the overbounding associated with affine parameter-dependence, the full block S-procedure with a linear fractional transformation formulation is used. The performance and the efficiency of the proposed MPC-LPV algorithm is validated via simulation and compared with the original scheme and other conventional controllers.

References

    1. 1)
      • 1. European Wind Energy Association (EWEA), Wind Energy – The Facts, a Guide to the Technology, Economics and Future of Wind Power, Brussels, Belgium. Available at: www.wind-energy-the-facts.org. [last accessed in May 2016].
    2. 2)
      • 2. Thomsen, S.: ‘Nonlinear control of a wind turbine’. Master's thesis, Technical University of Denmark, 2006.
    3. 3)
      • 3. Bossanyi, E.A.: ‘The design of closed loop controllers for wind turbines’, Wind Energy, 2000, 3, pp. 149163.
    4. 4)
      • 4. Bossanyi, E.A.: ‘Wind turbine control for load reduction’, Wind Energy, 2003, 6, (3), pp. 229244.
    5. 5)
      • 5. Hwas, A., Katebi, R.: ‘Wind turbine control using PI pitch angle controller’. Proc. of IFAC Conf. Advances in PID Control, Brescia, Italy, 2012.
    6. 6)
      • 6. Wright, A.D., Fingersh, L.J.: ‘Advanced control design for wind turbines Part I: control design, implemenation, and initial tests’. NREL Report, No. Tp-500-42437, National Renewable Energy Laboratory, 2008.
    7. 7)
      • 7. Rocha, R., Martins Filho, L., Bortolus, M.: ‘Optimal multivariable control for wind energy conversion system - a comparison between h2 and h1 controllers’. Proc. of the IEEE Control and Decision Conf. and European Control Conf., 2005, pp. 79067911.
    8. 8)
      • 8. Boukhezzar, B., Siguerdidjane, H.: ‘Nonlinear control of variable speed wind turbines without wind speed measurement’. Proc. of the 44th IEEE Conf. Decision and Control, and the European Control Conf., Seville, Spain, December 2005.
    9. 9)
      • 9. Burkart, R., Margellos, K., Lygeros, J.: ‘Nonlinear control of wind turbines: an approach based on switched linear systems and feedback linearization’. Proc. of the 50th IEEE Conf. Decision and Control and European Control Conf., Orland, FL, USA, 2011, pp. 54855490.
    10. 10)
      • 10. Boukhezzar, B., Lupu, H., Siguerdidjane, L., et al: ‘Multivariable control strategy for variable speed, variable pitch wind turbines’, Renew. Energy, 2007, 32, (8), pp. 12731287.
    11. 11)
      • 11. Beltran, B., Ali, T.A., Benbouzid, M.: ‘Sliding mode power control of variable-speed wind energy conversion systems’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 551558.
    12. 12)
      • 12. Rubio, J.O.M., Aguilar, L.T.: ‘Maximizing the performance of variable speed wind turbine with nonlinear output feedback control’, Procedia Eng., 2012, 35, pp. 3140.
    13. 13)
      • 13. Maciejowski, J.: ‘Predictive control with constraints’ (Prentice-Hall, 2000).
    14. 14)
      • 14. Lio, W.H., Rossiter, J.A., Jones, B.L.: ‘A review on applications of model predictive control to wind turbines’. Proc. of the UKACC Int. Conf. in Control, Loughborough, 2014, pp. 673678.
    15. 15)
      • 15. Henriksen, L.: ‘Model predictive control of a wind turbine’. Master's thesis, Technical University of Denmark, 2007.
    16. 16)
      • 16. Morsi, A., Abbas, H.S., Mohamed, A.M.: ‘Model predictive control of a wind turbine based on linear parameter-varying models’. Proc. of the IEEE Multi-Conf. Systems and Control, Sydney, Australia, 2015, pp. 318323.
    17. 17)
      • 17. Mirzaei, M., Poulsen, N.K., Niemann, H.H.: ‘Robust model predictive control of a wind turbine’. Proc. of the IEEE American Control Conf., Montreal, QC, 2012, pp. 43934398.
    18. 18)
      • 18. Soliman, M., Malik, O.P., Westwich, D.T.: ‘Multiple model MIMO predictive control for variable speed pitch wind turbines’. Proc. of the IEEE American Control Conf., Baltimore, MD, USA, 2010, pp. 27782784.
    19. 19)
      • 19. Soltani, M., Wisniewski, R., Brath, P., et al: ‘Load reduction of wind turbines using receding horizon control’. Proc. of the IEEE Int. Conf. Control Applications, Denver, CO, USA, 2011, pp. 852857.
    20. 20)
      • 20. Lu, Y., Arkun, Y.: ‘Quasi-min-max MPC algorithms for LPV systems’, Automatica, 2000, 36, (4), pp. 527540.
    21. 21)
      • 21. Rugh, W.J., Shamma, J.S.: ‘Research on gain scheduling’, Automatica, 2000, 36, (10), pp. 14011425.
    22. 22)
      • 22. Abbas, H.S., Ali, A., Hashemi, S.M., et al: ‘LPV state-feedback control of a control moment gyroscope’, Control Eng. Pract., 2014, 24, pp. 129137.
    23. 23)
      • 23. Abbas, H.S., Tóth, R., Meskin, N., et al: ‘A robust MPC for input-output LPV models’, IEEE Trans. Autom. Control, 2016, PP, (99), pp. 11.
    24. 24)
      • 24. Mirzaei, M., Poulsen, N.K., Niemann, H.H.: ‘Model predictive control of a nonlinear system with known scheduling variable’. Proc. of the 17th Nordic process Control Workshop, 2012, pp. 163168.
    25. 25)
      • 25. Apkarian, P., Adams, R.J.: ‘Advanced gain-scheduling techniques for uncertain systems’, IEEE Trans. Control Syst. Technol., 1997, 6, pp. 2132.
    26. 26)
      • 26. Scherer, C.W.: ‘LPV control and full block multipliers’, Automatica, 2001, 37, (3), pp. 361375.
    27. 27)
      • 27. Harris, M., Hand, M., Wright, A.: ‘LIDAR for turbine control’. Technical report, National Renewable Energy Laboratory, 2006.
    28. 28)
      • 28. Tóth, R.: ‘Modeling and identification of linear parameter- varying systems’ (Springer Science and Business Media, 2010), vol. 403.
    29. 29)
      • 29. Hoffmann, C., Hashemi, S.M., Abbas, H.S., et al: ‘Synthesis of LPV controllers with low implementation complexity based on a reduced parameter set’, IEEE Trans. Control Syst. Technol., 2014, 22, (6), pp. 23932398.
    30. 30)
      • 30. Bianchi, F.D., Battista, H., Mantz, R.J.: ‘Wind turbine control systems: principles, modelling and gain scheduling design’ (Springer-Verlag, London, 2007).
    31. 31)
      • 31. Besselmann, T., Löfberg, J., Morari, M.: ‘Explicit MPC for LPV systems: stability and optimality’, IEEE Trans. Autom. Control, 2012, 57, (9), pp. 23222332.
    32. 32)
      • 32. Kouvaritakis, B., Rossiter, J.A., Schuurmans, J.: ‘Efficient robust predictive control’, IEEE Trans. Autom. Control, 2000, 45, (8), pp. 15451549.
    33. 33)
      • 33. Control System Toolbox, the MathWorks, R2013b.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0426
Loading

Related content

content/journals/10.1049/iet-cta.2017.0426
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address