http://iet.metastore.ingenta.com
1887

Event-triggered non-fragile filtering of linear systems with a structure separated approach

Event-triggered non-fragile filtering of linear systems with a structure separated approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Considering filter gains with additive interval variations, this study is devoted to the non-fragile filtering of linear systems with an event-triggered transmission. To take into account the influence of these variations thoroughly, a structured vertex separator is adopted to alleviate the computation burden. Combining the Finsler lemma, conditions of designing the non-fragile filter to ensure the required performance are formed by linear matrix inequalities. Compared to the norm-bounded method to handle the variations, the proposed method could provide less conservative results. Simulations are executed to show the validity of the proposed method.

References

    1. 1)
      • 1. Campos-Delgado, D.U., Rojas, A.J., Luna-Rivera, J.M., et al: ‘Event-triggered feedback for power allocation in wireless networks’, IET Control Theory Appl., 2015, 9, pp. 20662074.
    2. 2)
      • 2. Peng, C., Ma, S., Xie, X.: ‘Observer-based non-PDC control for networked T–S fuzzy systems with an event-triggered communication’, IEEE Trans. Cybern., 2017, 47, pp. 22792287.
    3. 3)
      • 3. Astrom, K.J.: ‘Event based control’, in Marconi, A., Astrolfi, L (EDs.): ‘Analysis and design of nonlinear control systems’ (Springer-Verlag, 2008).
    4. 4)
      • 4. Lehmann, D., Lunze, J.: ‘Extension and experimental evaluation of an event-based state-feedback approach’, Control Eng. Pract., 2011, 19, pp. 101112.
    5. 5)
      • 5. Shi, P., Wang, H., Lim, C.C.: ‘Network-based event-triggered control for singular systems with quantizations’, IEEE Trans. Ind. Electron., 2016, 63, pp. 12301238.
    6. 6)
      • 6. Yue, D., Tian, E., Han, Q.: ‘A delay system method for designing event-triggered controllers of networked control systems’, IEEE Trans. Autom. Control, 2013, 58, pp. 475481.
    7. 7)
      • 7. Peng, C., Li, J., Fei, M.: ‘Resilient event-triggered H load frequency control for networked power systems with energy-limited DoS attacks’, IEEE Trans. Power Syst., 2016, 32, pp. 41104118.
    8. 8)
      • 8. Lunze, J., Lehmann, D.: ‘A state-feedback approach to event-based control’, Automatica, 2010, 46, pp. 211215.
    9. 9)
      • 9. Peng, C., Yue, D., Fei, M.: ‘A higher energy efficient sampling scheme for networked control systems over IEEE 802.15.4 wireless networks’, IEEE Trans. Ind. Inf., 2016, 12, pp. 17661774.
    10. 10)
      • 10. Li, H., Fu, M.: ‘A linear matrix inequality approach to robust H filtering’, IEEE Trans. Signal Process., 1997, 45, pp. 23382350.
    11. 11)
      • 11. Kim, J.H.: ‘Delay-dependent robust H filtering for uncertain discrete-time singular systems with interval time-varying delay’, Automatica, 2010, 46, pp. 591597.
    12. 12)
      • 12. Du, D., Qi, B., Fei, M., et al: ‘Multiple event-triggered H2/H filtering for hybrid wired-wireless networked systems with random network-induced delays’, Inf. Sci., 2015, 325, pp. 393408.
    13. 13)
      • 13. Shen, M.: ‘H filtering of continuous Markov jump linear system with partly known Markov modes and transition probabilities’, J. Franklin Inst., 2013, 350, pp. 33843399.
    14. 14)
      • 14. Goncalves, A.P.C., Fioravanti, A.R., Geromel, J.C.: ‘H filtering of discrete-time Markov jump linear systems through linear matrix inequalities’, IEEE Trans. Autom. Control, 2009, 54, pp. 13471351.
    15. 15)
      • 15. Liu, J., Fei, S., Tian, E., et al: ‘Co-design of event generator and filtering for a class of T–S fuzzy systems with stochastic sensor faults’, Fuzzy Sets Syst., 2015, 273, pp. 124140.
    16. 16)
      • 16. Yoneyama, J.: ‘H filtering for fuzzy systems with immeasurable premise variables: an uncertain system approach’, Fuzzy Sets Syst., 2009, 160, pp. 17381748.
    17. 17)
      • 17. Chibani, A., Chadli, M., Shi, P., et al: ‘Fuzzy fault detection filter design for T–S fuzzy systems in finite frequency domain’, IEEE Trans. Fuzzy Syst., 2016, doi: 10.1109/TFUZZ.2016.2593921.
    18. 18)
      • 18. Dorato, P.: ‘Non-fragile controller design: an overview’. Proc. Am. Control Conf., Philadelphia, PA, 1998, pp. 28292831.
    19. 19)
      • 19. Yang, G., Guo, X., Che, W., et al: ‘Linear systems: non-fragile control and filtering’ (Taylor & Francis, Boca Raton, FL, USA, 2013).
    20. 20)
      • 20. Du, H., Lam, J., Sze, K.Y.: ‘Design of non-fragile H controller for active vehicle suspensions’, J. Vib. Control, 2005, 11, pp. 225243.
    21. 21)
      • 21. Shu, Z., Lam, J., Xiong, J.: ‘Non-fragile exponential stability assignment of discrete-time linear systems with missing data in actuators’, IEEE Trans. Autom. Control, 2009, 54, pp. 625630.
    22. 22)
      • 22. Mahmoud, M.S.: ‘Resilient L2L filtering of polytopic systems with state delays’, IET Control Theory Appl., 2007, 1, pp. 141154.
    23. 23)
      • 23. Chang, X., Yang, G.: ‘Nonfragile H filtering of continuous-time fuzzy systems’, IEEE Trans. Signal Process., 2011, 59, pp. 15281538.
    24. 24)
      • 24. Lu, R., Liu, S., Peng, H., Y., et alNon-fragile filtering for fuzzy stochastic systems over fading channel’, Neurocomputing, 2016, 174, pp. 553559.
    25. 25)
      • 25. Liu, Y., Park, J.H., Guo, B.: ‘Non-fragile H filtering for nonlinear discrete-time delay systems with randomly occurring gain variations’, ISA Trans., 2016, 63, pp. 196203.
    26. 26)
      • 26. Yang, G., Che, W.: ‘Non-fragile H filter design for linear continuous-time systems’, Automatica, 2008, 44, pp. 28492856.
    27. 27)
      • 27. Ding, D., Li, X., Wang, Y., et al: ‘Non-fragile H fuzzy filtering for discrete-time non-linear systems’, IET Control Theory Appl., 2013, 7, pp. 848857.
    28. 28)
      • 28. Zhang, D., Shi, P., Wang, Q., et al: ‘Distributed non-fragile filtering for T–S fuzzy systems with event-based communications’, Fuzzy Sets Syst., 2017, 306, pp. 137152.
    29. 29)
      • 29. Boyd, S., Ghaoui, L.E.L., Feron, E., et al: ‘Linear matrix inequalities in system and control theory’ (SIAM, Philadelphia, PA, 1994).
    30. 30)
      • 30. Wang, Y., Xie, L., de Souza, C.E.: ‘Robust control of a class of uncertain nonlinear systems’, Syst. Control Lett., 1992, 19, pp. 139149.
    31. 31)
      • 31. Shen, H., Zhu, Y., Zhang, L., et al: ‘Extended dissipative state estimation for Markov jump neural networks with unreliable links’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, pp. 346358.
    32. 32)
      • 32. Shen, H., Su, L., Park, J.H.: ‘Reliable mixed H/passive control for T–S fuzzy delayed systems based on a semi-Markov jump model approach’, Fuzzy Sets Syst., 2017, 314, pp. 7998.
    33. 33)
      • 33. Lee, T.H., Park, J.H.: ‘Stability analysis of sampled-data systems via free-matrix-based time-dependent discontinuous Lyapunov approach’, IEEE Trans. Autom. Control, 2017, 62, pp. 36533657.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0421
Loading

Related content

content/journals/10.1049/iet-cta.2017.0421
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address