http://iet.metastore.ingenta.com
1887

Backstepping control of sandwich-like non-linear systems with deadzone non-linearity

Backstepping control of sandwich-like non-linear systems with deadzone non-linearity

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study studies the output tracking control of a class of sandwich-like systems with state-dependent deadzone non-linearity between two cascaded subsystems (e.g. the gear transmission systems). An exact differentiator-based backstepping control for such a sandwich-like non-linear system is proposed. The proposed controller utilises the high-order sliding mode robust exact differentiator to compensate the impact of non-strict feedback coupling term due to the sandwiched deadzone. The stability of the closed-loop system is guaranteed to be uniform-ultimately bounded and the output tracking error converges to a residual set. Finally, two simulation examples are provided to demonstrate the tracking performance and effectiveness of the proposed controller.

References

    1. 1)
      • 1. Tao, G., Kokotovic, P.V.: ‘Adaptive control of plants with unknown dead-zones’, IEEE Trans. Autom. Control, 1994, 39, (1), pp. 5968.
    2. 2)
      • 2. Cho, H., Bai, E.W.: ‘Convergence results for an adaptive dead zone inverse’, Int. J. Adapt. Control Signal Process., 1998, 12, (5), pp. 451466.
    3. 3)
      • 3. Oh, S.Y., Park, D.J.: ‘Design of new adaptive fuzzy logic controller for nonlinear plants with unknown or time-varying dead zones’, IEEE Trans. Fuzzy Syst., 1998, 6, (4), pp. 482491.
    4. 4)
      • 4. Zhou, J., Wen, C., Zhang, C.: ‘Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 504511.
    5. 5)
      • 5. Zhou, J., Shen, X.Z.: ‘Robust adaptive control of nonlinear uncertain plants with unknown dead-zone’, IET Control Theory Appl., 2007, 1, (1), pp. 2523.
    6. 6)
      • 6. Zhou, J.: ‘Decentralized adaptive control for large-scale time-delay systems with deadzone input’, Automatica, 2008, 44, (7), pp. 17901799.
    7. 7)
      • 7. Wang, X.S., Su, C.Y., Hong, H.: ‘Robust adaptive control of a class of nonlinear systems with unknown dead-zone’, Automatica, 2004, 40, (3), pp. 407413.
    8. 8)
      • 8. Ibrir, S., Xie, W.F., Su, C.Y.: ‘Adaptive tracking of nonlinear systems with non-symmetric dead-zone input’, Automatica, 2007, 43, (3), pp. 522530.
    9. 9)
      • 9. Zhang, T.P., Ge, S.S.: ‘Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs’, Automatica, 2007, 43, (6), pp. 10211033.
    10. 10)
      • 10. Zuo, Z., Li, X., Shi, Z.: ‘L1 adaptive control of uncertain gear transmission servo systems with deadzone nonlinearity,’ ISA Trans., 2015, 58, pp. 6775.
    11. 11)
      • 11. Shi, Z., Zuo, Z.: ‘Backstepping control for gear transmission servo systems with backlash nonlinearity’, IEEE Trans. Autom. Sci. Eng., 2015, 12, (2), pp. 752757.
    12. 12)
      • 12. Zuo, Z., Ju, X., Ding, Z.: ‘Control of gear transmission servo systems with asymmetric deadzone nonlinearity’, IEEE Trans. Control Syst. Tech., 2016, 24, (4), pp. 14721479.
    13. 13)
      • 13. Saberi, A., Kokotovic, P.V., Sussmann, H.J.: ‘Global stabilization of partially linear composite systems’, SIAM J. Control Optim., 1990, 28, (6), pp. 14911503.
    14. 14)
      • 14. Wang, X., Stoorvogel, A.A., Saberi, A., et al: ‘Stabilization of a class of sandwich systems via state feedback’, IEEE Trans. Autom. Control, 2010, 55, (6), pp. 21562160.
    15. 15)
      • 15. Stoorvogel, A.A., Wang, X., Saberi, A., et al: ‘Stabilization of sandwich non-linear systems with low-and-high gain feedback design.’ American Control Conf., 2010, pp. 42174222.
    16. 16)
      • 16. Taware, A., Tao, G., Teolis, C.: ‘Design and analysis of a hybrid control scheme for sandwich nonsmooth nonlinear systems’, IEEE Trans. Autom. Control, 2002, 47, (1), pp. 145150.
    17. 17)
      • 17. Taware, A., Tao, G.: ‘An adaptive dead-zone inverse controller for systems with sandwiched dead-zones’, Int. J. Control, 2003, 76, (8), pp. 755769.
    18. 18)
      • 18. Zhang, T., Ge, S.S.: ‘Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions’, IEEE Trans. Neural Netw., 2009, 20, (3), pp. 483497.
    19. 19)
      • 19. Krstic, M., Kanellakopoulos, I., Kokotovic, P.: ‘Nonlinear and adaptive control design’ (Wiley, New York, 1995).
    20. 20)
      • 20. Ding, Z.: ‘Nonlinear and adaptive control systems’ (IET, London, UK, 2013).
    21. 21)
      • 21. Li, Y., Tong, S., Liu, Y., et al: ‘Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 164176.
    22. 22)
      • 22. Li, Y., Tong, S., Li, T.: ‘Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead zones’, IEEE Trans. Syst. Man. Cybern. A, 2015, 23, (4), pp. 164176.
    23. 23)
      • 23. Tong, S., Zhang, L., Liu, Y.: ‘Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones’, IEEE Trans. Syst. Man. Cybern. A, 2016, 46, (1), pp. 3747.
    24. 24)
      • 24. Wang, H.Q., Chen, B., Liu, K.F., et al: ‘Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (5), pp. 947958.
    25. 25)
      • 25. Wang, H.Q., Liu, X.P., Liu, K.F., et al: ‘Approximation-based adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear time-delay systems’, IEEE Trans. Fuzzy Syst., 2015, 23, (5), pp. 17461760.
    26. 26)
      • 26. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 75, (9/10), pp. 924941.
    27. 27)
      • 27. Levant, A.: ‘Quasi-continuous high-order sliding-mode controllers’, IEEE Trans. Autom. Control, 2005, 50, (11), pp. 18121816.
    28. 28)
      • 28. Nordin, M., Gutman, P.O.: ‘Controlling mechanical systems with backlash – a survey’, Automatica, 2002, 38, (10), pp. 16331649.
    29. 29)
      • 29. Freeman, R.A., Kokotović, P.: ‘Robust nonlinear control design’ (Birkhauser, Boston, USA, 2008), pp. 101136.
    30. 30)
      • 30. Nordin, M., Galic, J., Gutman, P.O.: ‘New models for backlash and gearplay’, Int. J. Adapt. Control Signal Process., 1997, 11, (1), pp. 4963.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0407
Loading

Related content

content/journals/10.1049/iet-cta.2017.0407
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address