http://iet.metastore.ingenta.com
1887

High gain observer design for fractional-order non-linear systems with delayed measurements: application to synchronisation of fractional-order chaotic systems

High gain observer design for fractional-order non-linear systems with delayed measurements: application to synchronisation of fractional-order chaotic systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a high gain observer with delayed driving control signal is designed for synchronisation of fractional-order chaotic systems. The method consists in using two cascade high gain observers in order to compensate for the delay transmission signal from the transmitter to the receiver. For large delay, a fractional-order chain observer composed by high gain cascade delayed observers is proposed. The last observer of this chain estimates the state at the current time while previous observers estimate delayed states. Convergence of the proposed observer is proven. Application to the synchronisation of fractional-order chaotic systems is given. Computer simulations show the effectiveness of the proposed approach.

References

    1. 1)
      • 1. Sabatier, J., Agrawal, O., Machado, J.T.: ‘Advances in fractional calculus: theoretical developments and applications in physics and engineering’ (Springer, Berlin, 2007).
    2. 2)
      • 2. Hilfer, R.: ‘Applications of fractional calculus in physics’ (World Scientific, Singapore, 2000).
    3. 3)
      • 3. Magin, R.L.: ‘Fractional calculus in bioengineering’ (Begell House Publishers, 2004).
    4. 4)
      • 4. Monje, C.A., Chen, Y.Q., Vinagre, B.M., , et al: ‘Fractional-order systems and control: fundamentals and applications’ (Springer, Boston, 2010).
    5. 5)
      • 5. Djamah, T., Djennoune, S., Bettayeb, M.: ‘Diffusion processes identification in cylindrical geometry using fractional models’, Phys. Scr., 2009, T136, 014013.
    6. 6)
      • 6. Poinot, T., Trigeassou, J.: ‘Identification of fractional systems using an output-error technique’, Nonlinear Dyn., 2004, 38, (1), pp. 133154.
    7. 7)
      • 7. Adolfsson, K., Enelund, M., Olsson, P.: ‘On the fractional order model of viscoelasticity’, Mech. Time-Depend. Mat., 2005, 9, (1), pp. 1534.
    8. 8)
      • 8. Sun, H.H., Abdelwahab, A.A., Onaral, B.: ‘Linear approximation of transfer function with a pole of fractional power’, IEEE Trans. Autom. Control, 1984, 29, (5), pp. 441444.
    9. 9)
      • 9. Hu, S., Chen, Y.Q., Qiu, T.S.: ‘Fractional processes and fractional-order signal processing, techniques and applications’ (Springer, 2012).
    10. 10)
      • 10. Elwakil, A.S.: ‘Fractional-order circuits and systems: an emerging interdisciplinary research area’, IEEE Circuits Syst. Mag., 2010, 10, (4), pp. 4050.
    11. 11)
      • 11. Podlubny, I.: ‘Fractional-order systems and PI λ D μ- controllers’, IEEE Trans. Autom. Control, 1999, 44, (1), pp. 208214.
    12. 12)
      • 12. Caponetto, R., Dongola, G., Fortuna, L.: ‘Fractional order systems: modeling and control applications’ (World Sci., Singapore, 2010).
    13. 13)
      • 13. Murphy, R.P.: ‘Chaos theory’ (Ludwig von Mises Institute, 2010, 2nd edn.), Creative commons attribution License 3.0.
    14. 14)
      • 14. Zhang, H., Liu, D., Wang, Z.: ‘Controlling chaos suppression, synchronization and chaotification’ (Springer, 2009).
    15. 15)
      • 15. Pecora, L.M., Carroll, T.L.: ‘Synchronization in chaotic systems’, Phys. Rev. Lett., 1999, 64, (8), pp. 821824.
    16. 16)
      • 16. Nijmeijer, H., Mareels, I.M.Y.: ‘An observer looks at synchronization’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1997, 44, (10), pp. 882890.
    17. 17)
      • 17. Petras, I.: ‘Fractional-order nonlinear systems’ (Springer, Heidelberg Dordrecht, London, New York, 2011).
    18. 18)
      • 18. Grigorenko, I., Grigorenko, E.: ‘Chaotic dynamics of the fractional Lorenz system’, Phys. Rev. Lett., 2003, 91, (3), p. 034101.
    19. 19)
      • 19. Cafagna, D., Grassi, G.: ‘Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems’, Nonlinear Dyn., 2012, 68, (1), pp. 117128.
    20. 20)
      • 20. Hartley, T.T., Lorenzo, C.F.: ‘Chaos in fractional-order Chua system’, IEEE Trans. Circuits Syst., I Fundam. Theory Appl., 1995, 42, (8), pp. 485490.
    21. 21)
      • 21. Lu, J.G.: ‘Chaotic dynamics and synchronization of fractional-order Arneodo's systems’, Chaos Solitons Fractals, 2005, 26, (5), pp. 11251133.
    22. 22)
      • 22. Gao, X., Yu, J.B.: ‘Chaos in the fractional order periodically forced complex Duffing's oscillators’, Chaos Solitons Fractals, 2005, 24, (4), pp. 10971104.
    23. 23)
      • 23. Li, C.P., Peng, G.J.: ‘Chaos in Chen's system with a fractional-order’, Chaos Solitons Fractals, 2004, 22, (2), pp. 443450.
    24. 24)
      • 24. Wu, X.J., Lu, Y.: ‘Generalized projective synchronization of the fractional-order Chen hyperchaotic system’, Nonlinear Dyn., 2009, 57, (1-2), pp. 2535.
    25. 25)
      • 25. Agrawal, S.K., Das, S.: ‘Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method’, J. Process Control, 2014, 24, (5), pp. 517530.
    26. 26)
      • 26. Xi, H.L., Yu, S.M., Zhang, R.X., , et al: ‘Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems’, Optik-Int. J. Light Electron Opt., 2014, 125, (9), pp. 20362040.
    27. 27)
      • 27. Agrawal, S., Srivastava, M., Das, S.: ‘Synchronization of fractional order chaotic systems using active control method’, Chaos Solitons Fractals, 2012, 45, pp. 737752.
    28. 28)
      • 28. Mohammad, H., Mahsa, D.: ‘Impulsive synchronization of Chen's hyperchaotic system’, Mod. Phys. Lett. A, 2006, 356, (3), pp. 226230.
    29. 29)
      • 29. Khanzadeh, A., Pourgholi, M.: ‘Robust synchronization of fractional-order chaotic systems at a pre-specified time using sliding mode controller with time-varying switching surfaces’, Chaos, Solitons Fractals, 2016, 91, pp. 6977.
    30. 30)
      • 30. Shao, S., Chen, M., Yan, X.: ‘Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance’, Nonlinear Dyn., 2016, 83, (4), pp. 18551866.
    31. 31)
      • 31. Yin, C., Chen, Y.Q., Zhong, S.: ‘Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems’, Automatica, 2014, 50, (12), pp. 31733181.
    32. 32)
      • 32. Bornard, G., Hammouri, H.: ‘A high gain observer for a class of uniformly observable systems’. Proc. of the 30th IEEE Conf. Decision and Control, Brighton, England, 1991, DOI: 10.1109/CDC.1991.261650.
    33. 33)
      • 33. Gauthier, J.P., Hammouri, H., Othman, S.: ‘A simple observer for nonlinear systems: application to bioreactors’, IEEE Trans. Autom. Control, 1992, 37, (6), pp. 875880.
    34. 34)
      • 34. Barbot, J-P., Djemai, M., Boukhobza, T.: ‘Sliding mode observers’, in Perruquetti, W., Barbot, J.-P. (Eds.): ‘Sliding mode control in engineering’ (CRC Press, Taylor and Francis Group, 2002), pp. 14891491.
    35. 35)
      • 35. Keller, H.: ‘Non-linear observer design by transformation into a generalized observer canonical form’, Int. J. Control, 1987, 46, pp. 19151930.
    36. 36)
      • 36. Krener, A.J., Isidori, A.: ‘Linearization by output injection and nonlinear observers’, Syst. Control Lett., 1983, 3, pp. 4752.
    37. 37)
      • 37. Gauthier, J-P., Kupka, I.: ‘Deterministic observation theory and applications’ (Cambridge University Press, 2001).
    38. 38)
      • 38. Cherrier, E., M'Saad, M., Farza, M.: ‘High gain observer synchronization for a class of time-delay chaotic systems. Application to secure communications’, J. Nonlinear Syst. Appl., 2010, 1, (3-4), pp. 102112.
    39. 39)
      • 39. Yu, W.: ‘High-gain observer for chaotic synchronization and secure communication’, Int. J. Commun. Syst., 2005, 18, (5), pp. 487500.
    40. 40)
      • 40. Martinez-Guerra, R., Mata-Machuca, J.L., Aguilar-Lopez, R.: ‘Chaotic systems synchronization via high order observer design’, J. Appl. Res. Technol., 2011, 9, (1), pp. 5768.
    41. 41)
      • 41. Murguia, C., Fey, R.H.B., Nijmeijer, H.: ‘Immersion and invariance observers with time-delayed output measurements’, Commun. Nonlinear Sci. Numer. Simul., 2016, 30, (1-3), pp. 227235.
    42. 42)
      • 42. Kazantzis, N., Wright, R.A.: ‘Nonlinear observer design in the presence of delayed output measurements’, Syst. Control Lett., 2005, 54, (9), pp. 877886.
    43. 43)
      • 43. Asshe, V.V., Ahmed-Ali, T., Hann, C.A.B., , et al: ‘High gain observer design for nonlinear systems with time varying delayed measurements’. IFAC World Congress, Milano, 28 August–2 September 2011, pp. 692696.
    44. 44)
      • 44. Targui, B., Hernandez-Gonzales, O., Astorga-Zaragos, C-M., , et al: ‘Observer design for a class of Liptschitz nonlinear systems with delayed outputs: time-varying delay’. Congresse National de Control Automatico, AMCA 2015, Cuernavac, Morelos, Mexico, 2015, pp. 606610.
    45. 45)
      • 45. Germani, A., Manes, C., Pepe, P.: ‘A new approach to state observation of nonlinear systems with delayed output’, IEEE Trans. Autom. Control, 2002, 47, (1), pp. 96101.
    46. 46)
      • 46. Subbarao, K., Muralidhar, P.C.: ‘State observer for linear systems with piece-wise constant output delays’, IET Control Theory Appl., 2009, 3, (8), pp. 983994.
    47. 47)
      • 47. Cacace, F., Germani, A., Manes, C.: ‘An observer for a class of nonlinear systems with time varying observation delay’, Syst. Control Lett., 2010, 59, (5), pp. 305312.
    48. 48)
      • 48. Cacace, F., Germani, A., Manes, C.: ‘Observability through delayed measurements: a new approach to state observer design’, Int. J. Control, 2010, 83, (11), pp. 23952410.
    49. 49)
      • 49. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: ‘Theory and application of fractional differential equations’, in van Mill, J (Ed.): ‘North Holland mathematics studies’ (Elsevier, Amsterdam, 2006.
    50. 50)
      • 50. Hartley, T.T., Lorenzo, C.L.: ‘Dynamics and control of initialized fractional-order systems’, Nonlinear Dyn., 2002, 29, (1-4), pp. 201233.
    51. 51)
      • 51. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, San Diego, 1999).
    52. 52)
      • 52. Djeghali, N., Djennoune, S., Bettayeb, M.: ‘Observation and sliding mode observer for nonlinear fractional-order system with unknown input’, ISA Trans., 2016, 63, pp. 110.
    53. 53)
      • 53. Montseny, G.: ‘Diffusive representation of pseudo-differential time operators’, Proc. ESSAIM, 1998, 5, pp. 159175.
    54. 54)
      • 54. Trigeassou, J.C., Maamri, N., Sabatier, J., , et al: ‘A Lyapunov approach to the stability of fractional-differential equation’, Analog Integr. Circuits Signal Process., 2011, 91, (3), pp. 437445.
    55. 55)
      • 55. Lan, Y-H., Li, W-J., Zhou, Y., , et al: ‘Non-fragile observer design for fractional-order one-side Liptschitz nonlinear systems’, Int. J. Autom. Comput., 2013, 10, (4), pp. 296302.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0396
Loading

Related content

content/journals/10.1049/iet-cta.2017.0396
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address