Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust attitude tracking with exponential convergence

This study addresses robust attitude tracking of a spacecraft without unwinding by considering external disturbances and uncertain inertia parameters. Quaternion is used to represent the relative attitude for attitude tracking, thus the closed-loop system has two equilibria. A desired equilibrium is determined from them according to the sign of the initial relative attitude quaternion such that less rotation is required for attitude tracking. A backstepping scheme based on similar skew-symmetric structure is adopted to design the attitude controller. Two compensation terms are introduced to deal with the uncertainties. A parametric condition is provided to guarantee that the attitude tracking has an exponentially convergent speed without unwinding. The related parametric regulation is addressed for response speed, robustness and disturbance attenuation. It is shown that arbitrarily fast response and any specified tracking precision can both be achieved by regulating the related parameters of the proposed controller. Compared with the related research, a variable gain term is included in the proposed controller. Accordingly, the controller has relatively slower gain in the system response, thus large control amplitude is avoided. Furthermore, the controller has much higher gain in the steady state such that much higher control precision can be obtained for a given control amplitude when compared with other attitude tracking controllers. Simulations are carried out to validate the effectiveness of the proposed attitude controller.

References

    1. 1)
      • 2. Dalsmo, M., Egeland, O.: ‘State feedback h-suboptimal control of a rigid spacecraft’, IEEE Trans. Autom. Control, 1997, 42, (8), pp. 11861191.
    2. 2)
      • 5. Schaub, H., Akella, M.R., Junkins, J.L.: ‘Adaptive control of nonlinear attitude motions realizing linear closed loop dynamics’, J. Guid. Control Dyn., 2001, 24, (1), pp. 95100.
    3. 3)
      • 21. Cai, W.C., Song, Y.D.: ‘New intermediate quaternion based control of spacecraft: part ii–global attitude tracking’, Int. J. Innov. Comput. Inf. Control, 2012, 8, (11), pp. 78537864.
    4. 4)
      • 29. Lee, T., Chang, D.E., Eun, Y.: ‘Attitude control strategies overcoming the topological obstruction on so (3)’. American Control Conf. (ACC), 2017, IEEE, 2017, pp. 22252230.
    5. 5)
      • 15. Su, J., Cai, K.-Y.: ‘Globally stabilizing proportional-integral-derivative control laws for rigid-body attitude tracking’, J. Guid. Control Dyn., 2011, 34, (4), pp. 12601264.
    6. 6)
      • 10. Xia, Y., Zhu, Z., Fu, M., , et al: ‘Attitude tracking of rigid spacecraft with bounded disturbances’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 647659.
    7. 7)
      • 11. Li, Z.-X., Wang, B.-L.: ‘Robust attitude tracking control of spacecraft in the presence of disturbances’, J. Guid. Control Dyn., 2007, 30, (4), pp. 11561159.
    8. 8)
      • 28. Slotine, J.-J.E., Li, W., , et al: ‘Applied nonlinear control,’ vol. 199 (Prentice-Hall, Englewood Cliffs, NJ, 1991, no. 1).
    9. 9)
      • 23. Gui, H., Jin, L., Xu, S.: ‘Simple finite-time attitude stabilization laws for rigid spacecraft with bounded inputs’, Aerosp. Sci. Technol., 2015, 42, pp. 176186.
    10. 10)
      • 24. Guo, Y., Song, S.-M., Li, X.-H.: ‘Quaternion-based finite-time control for attitude tracking of the spacecraft without unwinding’, Int. J. Control Autom. Syst., 2015, 13, (6), pp. 13511359.
    11. 11)
      • 6. Seo, D., Akella, M.R.: ‘High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design’, J. Guid. Control Dyn., 2008, 31, (4), pp. 884891.
    12. 12)
      • 18. Sanyal, A., Fosbury, A., Chaturvedi, N., , et al: ‘Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization’, J. Guid. Control Dyn., 2009, 32, (4), pp. 11671178.
    13. 13)
      • 3. Luo, W., Chu, Y.-C., Ling, K.-V.: ‘h inverse optimal attitude-tracking control of rigid spacecraft’, J. Guid. Control Dyn., 2005, 28, (3), pp. 481494.
    14. 14)
      • 20. Song, Y.D., Cai, W.C.: ‘New intermediate quaternion based control of spacecraft: part i–almost global attitude tracking’, Int. J. Innov. Comput. Inf. Control, 2012, 8, (10), pp. 73077319.
    15. 15)
      • 4. Ahmed, J., Coppola, V.T., Bernstein, D.S.: ‘Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification’, J. Guid. Control Dyn., 1998, 21, (5), pp. 684691.
    16. 16)
      • 22. Wu, S., Radice, G., Gao, Y., , et al: ‘Quaternion-based finite time control for spacecraft attitude tracking’, Acta Astronaut., 2011, 69, (1), pp. 4858.
    17. 17)
      • 1. Kang, W.: ‘Nonlinear h control and its application to rigid spacecraft’, IEEE Trans. Autom. Control,, 1995, 40, (7), pp. 12811285.
    18. 18)
      • 7. Chen, Z., Huang, J.: ‘Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control,’ 2009.
    19. 19)
      • 16. Cui, H., Cheng, X.: ‘Anti-unwinding attitude maneuver control of spacecraft considering bounded disturbance and input saturation’, Sci. Chin. Technol. Sci., 2012, 55, (9), pp. 25182529.
    20. 20)
      • 26. Gui, H., Vukovich, G.: ‘Global finite-time attitude tracking via quaternion feedback’, Syst. Control Lett., 2016, 97, pp. 176183.
    21. 21)
      • 17. Hu, Q., Li, L., Friswell, M.I.: ‘Spacecraft anti-unwinding attitude control with actuator nonlinearities and velocity limit’, J. Guid. Control Dyn., 2015, 38, (10), pp. 20422050.
    22. 22)
      • 14. Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: ‘On path-lifting mechanisms and unwinding in quaternion-based attitude control’, IEEE Trans. Autom. Control, 2013, 58, (5), pp. 11791191.
    23. 23)
      • 27. Crassidis, J.L., Markley, F.L.Fundamentals of spacecraft attitude determination and control,’ 2014.
    24. 24)
      • 13. Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: ‘Quaternion-based hybrid control for robust global attitude tracking’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 25552566.
    25. 25)
      • 12. Liu, Y.C., Zhang, J., Zhang, T., et al: ‘Robust adaptive spacecraft attitude tracking control based on similar skew-symmetric structure’, Comput. Electr. Eng., 2016, 56, pp. 784794.
    26. 26)
      • 8. Yicheng, L., Tao, Z., Jingyan, S., , et al: ‘Adaptive spacecraft attitude tracking controller design based on similar skew-symmetric structure’, Chin. J. Aeronaut., 2010, 23, (2), pp. 227234.
    27. 27)
      • 9. Luo, W., Chu, Y.-C., Ling, K.-V.: ‘Inverse optimal adaptive control for attitude tracking of spacecraft’, IEEE Trans. Autom. Control, 2005, 50, (11), pp. 16391654.
    28. 28)
      • 25. Guo, Y., Song, S.: ‘Adaptive finite-time backstepping control for attitude tracking of spacecraft based on rotation matrix’, Chin. J. Aeronaut., 2014, 27, (2), pp. 375382.
    29. 29)
      • 19. Lee, T.: ‘Global exponential attitude tracking controls on so(3)’, IEEE Trans. Autom. Control, 2015, 60, (10), pp. 28372842.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0360
Loading

Related content

content/journals/10.1049/iet-cta.2017.0360
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address