http://iet.metastore.ingenta.com
1887

Adaptive neural control for stochastic pure-feedback non-linear time-delay systems with output constraint and asymmetric input saturation

Adaptive neural control for stochastic pure-feedback non-linear time-delay systems with output constraint and asymmetric input saturation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the adaptive tracking control is investigated for a class of stochastic pure-feedback non-linear time-delay systems with output constraint and asymmetric input saturation non-linearity. First, the Gaussian error function is employed to represent a continuous differentiable asymmetric saturation model, and the barrier Lyapunov function is designed to cope with the output constraints. Then, the appropriate Lyapunov–Krasovskii functional and the property of hyperbolic tangent functions are used to address the effects of the unknown time-delay terms, and the neural network is employed to approximate the unknown non-linearities. At last, based on Lyapunov stability theory, a robust adaptive neural controller is proposed, which decreases the number of learning parameters and thus avoids the over-estimation problem. Under the designed neural controller, all the closed-loop signals are guaranteed to be 4-moment (or 2 moment) semi-globally uniformly ultimately bounded and the tracking error converges to a small neighbourhood of the origin for bounded initial conditions. Two simulation examples are presented to further illustrate the effectiveness of the designed method.

References

    1. 1)
      • 1. Gu, K., Chen, J., Kharitonov, V.L.: ‘Stability of time-delay systems’ (Springer Science & Business Media, 2003).
    2. 2)
      • 2. He, W., Zhang, S., Ge, S.S.: ‘Adaptive control of a flexible crane system with the boundary output constraint’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 41264133.
    3. 3)
      • 3. Huang, J., Wen, C., Wang, W., et al: ‘Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance’, Syst. Control Lett., 2013, 62, (3), pp. 234241.
    4. 4)
      • 4. He, W., Chen, Y., Yin, Z.: ‘Adaptive neural network control of an uncertain robot with full-state constraints’, IEEE Trans. Cybern., 2016, 46, (3), pp. 620629.
    5. 5)
      • 5. Wang, M., Wang, C.: ‘Learning from adaptive neural dynamic surface control of strict-feedback systems’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (6), pp. 12471259.
    6. 6)
      • 6. Miao, B., Li, T.: ‘A novel neural network-based adaptive control for a class of uncertain nonlinear systems in strict-feedback form’, Nonlinear Dyn., 2015, 79, (2), pp. 10051013.
    7. 7)
      • 7. Wu, J., Chen, W., Li, J.: ‘Fuzzy-approximation-based global adaptive control for uncertain strict-feedback systems with a priori known tracking accuracy’, Fuzzy Sets Syst., 2015, 273, pp. 125.
    8. 8)
      • 8. Li, Y., Sui, S., Tong, S.: ‘Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics’, IEEE Trans. Cybern., 2017, 47, (2), pp. 403414.
    9. 9)
      • 9. Dai, S.L., Wang, C., Luo, F.: ‘Identification and learning control of ocean surface ship using neural networks’, IEEE Trans. Ind. Inf., 2012, 8, (4), pp. 801810.
    10. 10)
      • 10. Dai, S.L., Wang, C., Wang, M.: ‘Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (1), pp. 111123.
    11. 11)
      • 11. Dai, S.L., Wang, M., Wang, C.: ‘Neural learning control of marine surface vessels with guaranteed transient tracking performance’, IEEE Trans. Ind. Electron., 2016, 63, (3), pp. 17171727.
    12. 12)
      • 12. Ge, S.S., Hong, F., Lee, T.H.: ‘Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients’, IEEE Trans. Syst. Man Cybern. B (Cybern.), 2004, 34, (1), pp. 499516.
    13. 13)
      • 13. Yin, S., Shi, P., Yang, H.: ‘Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics’, IEEE Trans. Cybern., 2016, 46, (8), pp. 19261938.
    14. 14)
      • 14. Chen, B., Liu, X., Liu, K., et al: ‘Novel adaptive neural control design for nonlinear MIMO time-delay systems’, Automatica, 2009, 45, (6), pp. 15541560.
    15. 15)
      • 15. Cui, G., Wang, Z., Zhuang, G., et al: ‘Adaptive decentralized nn control of large-scale stochastic nonlinear time-delay systems with unknown dead-zone inputs’, Neurocomputing, 2015, 158, pp. 194203.
    16. 16)
      • 16. Zhou, Q., Shi, P., Xu, S., et al: ‘Observer-based adaptive neural network control for nonlinear stochastic systems with time delay’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (1), pp. 7180.
    17. 17)
      • 17. Li, Y., Ren, C., Tong, S.: ‘Adaptive fuzzy backstepping output feedback control for a class of MIMO time-delay nonlinear systems based on high-gain observer’, Nonlinear Dyn., 2012, 67, (2), pp. 11751191.
    18. 18)
      • 18. Wu, T.S., Karkoub, M., Chen, H.S., et al: ‘Robust tracking observer-based adaptive fuzzy control design for uncertain nonlinear MIMO systems with time delayed states’, Inf. Sci., 2015, 290, pp. 86105.
    19. 19)
      • 19. Huang, Y.S., Wu, M.: ‘Robust decentralized direct adaptive output feedback fuzzy control for a class of large-sale nonaffine nonlinear systems’, Inf. Sci., 2011, 181, (11), pp. 23922404.
    20. 20)
      • 20. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: ‘Nonlinear and adaptive control design’ (Wiley, 1995).
    21. 21)
      • 21. Wang, H., Chen, B., Lin, C., et al: ‘Observer-based adaptive neural control for a class of nonlinear pure-feedback systems’, Neurocomputing, 2016, 171, pp. 15171523.
    22. 22)
      • 22. Wang, F., Liu, Z., Zhang, Y., et al: ‘Adaptive fuzzy control for a class of stochastic pure-feedback nonlinear systems with unknown hysteresis’, IEEE Trans. Fuzzy Syst., 2016, 24, (1), pp. 140152.
    23. 23)
      • 23. Liu, Y.J., Tong, S.: ‘Adaptive fuzzy identification and control for a class of nonlinear pure-feedback MIMO systems with unknown dead zones’, IEEE Trans. Fuzzy Syst., 2015, 23, (5), pp. 13871398.
    24. 24)
      • 24. Li, Y., Tong, S., Li, T.: ‘Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems’, IEEE Trans. Cybern., 2015, 45, (1), pp. 138149.
    25. 25)
      • 25. Jiang, B., Shen, Q., Shi, P.: ‘Neural-networked adaptive tracking control for switched nonlinear pure-feedback systems under arbitrary switching’, Automatica, 2015, 61, pp. 119125.
    26. 26)
      • 26. Zhou, Q., Shi, P., Tian, Y., et al: ‘Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation’, IEEE Trans. Cybern., 2015, 45, (10), pp. 21192128.
    27. 27)
      • 27. Askari, M.R., Shahrokhi, M., Talkhoncheh, M.K.: ‘Observer-based adaptive fuzzy controller for nonlinear systems with unknown control directions and input saturation’, Fuzzy Sets Syst., 2017, 314, pp. 2445.
    28. 28)
      • 28. Gao, Y.F., Sun, X.M., Wen, C., et al: ‘Observer-based adaptive nn control for a class of uncertain nonlinear systems with nonsymmetric input saturation’, IEEE Trans. Neural Netw. Learn. Syst., 2017, doi:10.1109/TNNLS.2016.2529843.
    29. 29)
      • 29. Liu, W., Lu, J., Zhang, Z., et al: ‘Observer-based neural control for MIMO pure-feedback non-linear systems with input saturation and disturbances’, IET Control Theory Appl., 2016, 10, (17), pp. 23142324.
    30. 30)
      • 30. Yang, Y., Yue, D., Yuan, D.: ‘Adaptive neural tracking control of a class of MIMO pure-feedback time-delay nonlinear systems with input saturation’, Int. J. Syst. Sci., 2016, 47, (15), pp. 37303740.
    31. 31)
      • 31. Liu, Z., Liu, J.: ‘Boundary control of a flexible robotic manipulator with output constraints’, Asian J. Control, 2017, 19, (1), pp. 332345.
    32. 32)
      • 32. He, W., Ge, S.S.: ‘Cooperative control of a nonuniform gantry crane with constrained tension’, Automatica, 2016, 66, pp. 146154.
    33. 33)
      • 33. Tee, K.P., Ge, S.S.: ‘Control of nonlinear systems with partial state constraints using a barrier Lyapunov function’, Int. J. Control, 2011, 84, (12), pp. 20082023.
    34. 34)
      • 34. Niu, B., Zhao, J.: ‘Brief paper-output tracking control for a class of switched non-linear systems with partial state constraints’, IET Control Theory Appl., 2013, 7, (4), pp. 623631.
    35. 35)
      • 35. Li, Y., Li, T., Jing, X.: ‘Indirect adaptive fuzzy control for input and output constrained nonlinear systems using a barrier Lyapunov function’, Int. J. Adapt. Control Signal Process., 2014, 28, (2), pp. 184199.
    36. 36)
      • 36. Li, Y., Tong, S., Li, T.: ‘Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation’, Fuzzy Sets Syst., 2014, 248, pp. 138155.
    37. 37)
      • 37. Jin, X.: ‘Adaptive fault tolerant control for a class of input and state constrained MIMO nonlinear systems’, Int. J. Robust Nonlinear Control, 2016, 26, (2), pp. 286302.
    38. 38)
      • 38. Liu, Y.J., Tong, S.: ‘Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints’, Automatica, 2016, 64, pp. 7075.
    39. 39)
      • 39. Wang, Z., Burnham, K.J.: ‘Robust filtering for a class of stochastic uncertain nonlinear time-delay systems via exponential state estimation’, IEEE Trans. Signal Process., 2001, 49, (4), pp. 794804.
    40. 40)
      • 40. Wang, H., Chen, B., Liu, X., et al: ‘Adaptive neural tracking control for stochastic nonlinear strict-feedback systems with unknown input saturation’, Inf. Sci., 2014, 269, pp. 300315.
    41. 41)
      • 41. Deng, H., Krstic, M.: ‘Output-feedback stochastic nonlinear stabilization’, IEEE Trans. Autom. Control, 1999, 44, (2), pp. 328333.
    42. 42)
      • 42. Ren, B., Ge, S.S., Tee, K.P., et al: ‘Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function’, IEEE Trans. Neural Netw., 2010, 21, (8), pp. 13391345.
    43. 43)
      • 43. Lin, W., Qian, C.: ‘Adaptive control of nonlinearly parameterized systems: the smooth feedback case’, IEEE Trans. Autom. Control, 2002, 47, (8), pp. 12491266.
    44. 44)
      • 44. Li, Z., Li, T., Feng, G.: ‘Adaptive neural control for a class of stochastic nonlinear time-delay systems with unknown dead zone using dynamic surface technique’, Int. J. Robust Nonlinear Control, 2016, 26, (4), pp. 759781.
    45. 45)
      • 45. Ge, S.S., Tee, K.P.: ‘Approximation-based control of nonlinear MIMO time-delay systems’, Automatica, 2007, 43, (1), pp. 3143.
    46. 46)
      • 46. Sanner, R.M., Slotine, J.J.: ‘Gaussian networks for direct adaptive control’, IEEE Trans. Neural Netw., 1992, 3, (6), pp. 837863.
    47. 47)
      • 47. Kurdila, A., Narcowich, F.J., Ward, J.D.: ‘Persistency of excitation in identification using radial basis function approximants’, SIAM J. Control Optim., 1995, 33, (2), pp. 625642.
    48. 48)
      • 48. Ma, J., Ge, S.S., Zheng, Z., et al: ‘Adaptive nn control of a class of nonlinear systems with asymmetric saturation actuators’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (7), pp. 15321538.
    49. 49)
      • 49. Ge, S.S., Wang, C.: ‘Adaptive nn control of uncertain nonlinear pure-feedback systems’, Automatica, 2002, 38, (4), pp. 671682.
    50. 50)
      • 50. Deng, H., Krstic, M., Williams, R.J.: ‘Stabilization of stochastic nonlinear systems driven by noise of unknown covariance’, IEEE Trans. Autom. Control, 2001, 46, (8), pp. 12371253.
    51. 51)
      • 51. Wang, M., Ge, S.S., Hong, K.S.: ‘Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays’, IEEE Trans. Neural Netw., 2010, 21, (11), pp. 18041816.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0350
Loading

Related content

content/journals/10.1049/iet-cta.2017.0350
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address