© The Institution of Engineering and Technology
This study presents a linear matrix inequality (LMI) approach to the sampleddata control of Takagi–Sugeno fuzzy systems, based on the intelligent digital redesign (IDR) technique. The objective of the IDR is to design a digital control system whose trajectory closely matches that of a given wellconstructed analogue control system by minimising the statematching error. In this study, statematching performance is enhanced by using a continuoustime statematching criterion, which guarantees that the statematching error is minimised through the entire time interval. Unlike previous studies, mismatched information of membership functions for both analogue and digital control systems is directly manipulated. Moreover, the authors introduce an improved fuzzy Lyapunov functional that consists of both membership functions for analogue and digital control systems, which relaxes the conservativeness of LMI conditions. Finally, two examples demonstrating the effectiveness of the authors' method are provided.
References


1)

1. Lee, H.J., Kim, H., Joo, Y.H., et al: ‘A new intelligent digital redesign for T–S fuzzy systems: global approach’, IEEE Trans. Fuzzy Syst., 2004, 12, (2), pp. 274–284.

2)

2. Lee, H.J., Park, J.B., Joo, Y.H.: ‘Further refinement on LMIbased digital redesign: deltaoperator approach’, IEEE Trans. Circuits Syst. II, Express Briefs, 2006, 53, (6), pp. 473–477.

3)

3. Sung, H.C., Kim, D.W., Park, J.B., et al: ‘Robust digital control of fuzzy systems with parametric uncertainties: LMIbased digital redesign approach’, Fuzzy Sets Syst., 2010, 161, pp. 919–933.

4)

4. Koo, G.B., Park, J.B., Joo, Y.H.: ‘Intelligent digital redesign for nonlinear systems using a guaranteed cost control method’, Int. J. Control Autom. Syst., 2013, 11, (6), pp. 1075–1083.

5)

5. Koo, G.B., Park, J.B., Joo, Y.H.: ‘Intelligent digital redesign for nonlinear systems: observerbased sampleddata fuzzy control approach’, IET Control Theory Appl., 2016, 10, (1), pp. 1–9.

6)

6. Lam, H.K., Ling, W.K.: ‘Sampleddata fuzzy controller for continuous nonlinear systems’, IEEE Trans. Syst. Man Cybern., 2008, 2, (1), pp. 32–39.

7)

7. Yoneyama, J.: ‘Robust sampleddata stabilization of uncertain fuzzy systems via input delay approach’, Afr. J. Libr. Arch. Inf. Sci., 2012, 198, pp. 169–176.

8)

8. Yang, F., Zhang, H., Hui, G., et al: ‘Modeindependent fuzzy faulttolerant variable sampling stabilization of nonlinear networked systems with both timevarying and random delays’, Fuzzy Sets Syst., 2012, 207, pp. 45–63.

9)

9. Yang, F., Zhang, H., Wang, Y.: ‘An enhanced inputdelay approach to sampleddata stabilization of T–S fuzzy systems via mixed convex combination’, Nonlinear Dyn., 2014, 75, (3), pp. 501–512.

10)

10. Zhu, X.L., Chen, B., Yue, D., et al: ‘An improved input delay approach to stabilization of fuzzy systems under variable sampling’, IEEE Trans. Fuzzy Syst., 2012, 20, (2), pp. 330–341.

11)

11. Sakthivel, R., Kaviarasan, B., Ma, Y.K., et al: ‘Sampleddata reliable stabilization of T–S fuzzy systems and its application’, Complexity, 2016, 21, (2), pp. 518–529.

12)

12. Yang, F., Zhang, H.: ‘T–S modelbased relaxed reliable stabilization of networked control systems with timevarying delays under variable sampling’, Int. J. Fuzzy Syst., 2011, 13, (4), pp. 260–269.

13)

13. Sakthivel, R., Selvi, S., Mathiyalagan, K., et al: ‘Reliable mixed Hinfinity and passivitybased control for fuzzy markovian switching systems with probabilistic time delays and actuator failures’, IEEE Trans. Cybern., 2015, 45, (12), pp. 2720–2731.

14)

14. Selvaraj, P., Kaviarasan, B., Sakthivel, R., et al: ‘Faulttolerant SMC for Takagi–Sugeno fuzzy systems with timevarying delay and actuator saturation’, IET Control Theory Appl., 2017, 11, (8), pp. 1112–1123.

15)

15. Wu, Z.G., Shi, P., Su, H., et al: ‘Sampleddata fuzzy control of chaotic systems based on a TS fuzzy model’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 153–163.

16)

16. Wang, Z.P., Wu, H.N.: ‘On fuzzy sampleddata control of chaotic systems via a timedependent Lyapunov functional approach’, IEEE Trans. Cybern., 2015, 45, (4), pp. 819–829.

17)

17. Lam, H.K.: ‘Stabilization of nonlinear systems using sampleddata outputfeedback fuzzy controller based on polynomialfuzzymodelbased control approach’, IEEE Trans. Syst. Man Cybern., 2012, 42, (1), pp. 258–267.

18)

18. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (John Wiley and Sons, 2004).

19)

19. Tanaka, K., Hori, T., Wang, H.O.: ‘A multiple Lyapunov function approach to stabilization of fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2003, 11, (4), pp. 582–589.

20)

20. Kim, H.S., Park, J.B., Joo, Y.H.: ‘Relaxed stability conditions for the Takagi–Sugeno fuzzy system using a polynomial nonquadratic Lyapunov function’, IET Control Theory Appl., 2016, 10, (13), pp. 1590–1599.

21)

21. Gu, K.: ‘An integral inequality in the stability problem of timedelay systems’. 39th IEEE Conference on Decision and Control, 2000, pp. 2805–2810.

22)

22. Oliveira, J.V., Bernussou, J., Geromel, J.C.: ‘A new discretetime robust stability condition’, Syst. Control Lett., 1999, 37, (4), pp. 261–265.

23)

23. Lee, H.J., Park, J.B., Chen, G.: ‘Robust fuzzy control of nonlinear systems with parametric uncertainties’, IEEE Trans. Fuzzy Syst., 2001, 9, (2), pp. 369–379.

24)

24. Bouabdallah, S., Noth, A., Siegwart, R.: ‘PID vs LQ control techniques applied to an indoor micro quadrotor’. IEEE/RSJ Int. Conf. Intteligent Robots and Systems, 2004, pp. 2451–2456.

25)

25. Löfberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. CACSD Conf., 2004, pp. 284–289.

26)

26. Sturm, J.F.: ‘Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones’, Optim. Math. Softw., 1999, 11, pp. 625–653.

27)

27. Kim, H.S., Park, J.B., Joo, Y.H.: ‘A systematic approach to fuzzymodelbased robust Hinfinity control design for a quadrotor UAV under imperfect premise matching’, Int. J. Fuzzy Syst., 2017, 19, (4), pp. 1227–1237.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2017.0341
Related content
content/journals/10.1049/ietcta.2017.0341
pub_keyword,iet_inspecKeyword,pub_concept
6
6